This site is supported by donations to The OEIS Foundation.

# Index to OEIS: Section Pro

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]

probability difference equation: A001949
probability orderings: A005806
problems to work on, see sequences that need extending
problimes: A003066, A003067, A003068
product of digits of n: A007954
product of digits of primes, see: prime, smallest whose product of digits is (something)
product of earlier terms, not, see: smallest number not a product of earlier terms
product_{k >= 1} (1-x^k)^m , sequences from :

product_{k >= 1} (1-x^k)^m (1): m=1..10: A010815 (Euler's pentagonal theorem), A002107 A010816 A000727 A000728 A000729 A000730 A000731 A010817
product_{k >= 1} (1-x^k)^m (2): m=11..20: A010819 A000735 A010820 A010821 A010822 A000739 A010823 A010824 A010825 A010826
product_{k >= 1} (1-x^k)^m (3): m=21..30: A010827 A010828 A010829 A000594 (the Ramanujan tau function), A010830 A010831 A010832 A010833 A010834 A010835
product_{k >= 1} (1-x^k)^m (4): A010836 (m=31), A010837 (m=32), A010840 (m=40), A010838 (m=44), A010839 (m=48), A010841 (m=64)
product_{k >= 1} (1-x^k)^m (5): m=-1..-10: A000041 (partition numbers), A000712 A000716 A023003 A023004 A023005 A023006 A023007 A023008 A023009
product_{k >= 1} (1-x^k)^m (6): m=-11..-20: A023010 A005758 A023011 A023012 A023013 A023014 A023015 A023016 A023017 A023018
product_{k >= 1} (1-x^k)^m (7): A023019 (m=-21), A023020 (m=-22), A023021 (m=-23), A006922 (m=-24), A082556 (m=-30), A082557 (m=-32), A082558 (m=-48), A082559 (m=-64)

Production matrices

Production matrices are mentioned in many entries in the OEIS. For definition see the article by Emeric Deutsch, Luca Ferrari and Simone Rinaldi, <a href="http://arXiv.org/abs/math/0702638">Production matrices and Riordan arrays</a>

products of distinct primes: For products of 1, 2, 3, 4, 5, and 6 distinct primes see A000040, A006881, A007304, A046386, A046387, and A067885, resp.
profiles: A118131
projective planes of order n: A001231*
projective planes, maps on: A007137
projective planes, permanent of: A000794