|
|
A000011
|
|
Number of n-bead necklaces (turning over is allowed) where complements are equivalent.
(Formerly M0312 N0114)
|
|
95
|
|
|
1, 1, 2, 2, 4, 4, 8, 9, 18, 23, 44, 63, 122, 190, 362, 612, 1162, 2056, 3914, 7155, 13648, 25482, 48734, 92205, 176906, 337594, 649532, 1246863, 2405236, 4636390, 8964800, 17334801, 33588234, 65108062, 126390032, 245492244, 477353376, 928772650, 1808676326, 3524337980
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is also the number of minimal fibrations of a bidirectional n-cycle over the 2-bouquet up to precompositions with automorphisms of the n-cycle and postcomposition with automorphisms of the 2-bouquet. (Boldi et al.) - Sebastiano Vigna, Jan 08 2018
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..3335 (first 201 terms from T. D. Noe)
Joerg Arndt, Matters Computational (The Fxtbook)
Paolo Boldi, Sebastiano Vigna, Fibrations of Graphs, Discrete Math., 243 (2002), 21-66.
H. Bottomley, Initial terms of A000011 and A000013
Aharon Davidson, From Planck Area to Graph Theory: Topologically Distinct Black Hole Microstates, arXiv:1907.03090 [gr-qc], 2019.
Daniel T. Eatough, Keith A. Seffen, Calculating the Fold Angles of Any Vertex Roof Using a Spherical Image Technique, J. Mechanisms Robotics (2020) Vol. 12, No. 3, 031004.
N. J. Fine, Classes of periodic sequences, Illinois J. Math., 2 (1958), 285-302.
Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
W. D. Hoskins and Anne Penfold Street, Twills on a given number of harnesses, J. Austral. Math. Soc. Ser. A 33 (1982), no. 1, 1-15.
W. D. Hoskins and A. P. Street, Twills on a given number of harnesses, J. Austral. Math. Soc. (Series A), 33 (1982), 1-15. (Annotated scanned copy)
Karyn McLellan, Periodic coefficients and random Fibonacci sequences, Electronic Journal of Combinatorics, 20(4), 2013, #P32.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
A. P. Street, Letter to N. J. A. Sloane, N.D.
Zhe Sun, T. Suenaga, P. Sarkar, S. Sato, M. Kotani, H. Isobe, Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes, Proc. Nat. Acad. Sci. USA, vol. 113 no. 29, pp. 8109-8114, doi: 10.1073/pnas.1606530113.
A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264; doi:10.1246/bcsj.20140204. See Tables 1 and 2 (and text).
Index entries for sequences related to necklaces
Index entries for sequences related to bracelets
|
|
FORMULA
|
a(n) = (A000013(n) + 2^floor(n/2))/2.
|
|
EXAMPLE
|
From Jason Orendorff (jason.orendorff(AT)gmail.com), Jan 09 2009: (Start)
The binary bracelets for small n are:
n: bracelets
0: (the empty bracelet)
1: 0
2: 00, 01
3: 000, 001
4: 0000, 0001, 0011, 0101
5: 00000, 00001, 00011, 00101
6: 000000, 000001, 000011, 000101, 000111, 001001, 001011, 010101
(End)
|
|
MAPLE
|
with(numtheory): A000011 := proc(n) local s, d; if n = 0 then RETURN(1) else s := 2^(floor(n/2)); for d in divisors(n) do s := s+(phi(2*d)*2^(n/d))/(2*n); od; RETURN(s/2); fi; end;
|
|
MATHEMATICA
|
a[n_] := Fold[ #1 + EulerPhi[2#2]2^(n/#2)/(2n) &, 2^Floor[n/2], Divisors[n]]/2
a[ n_] := If[ n < 1, Boole[n == 0], 2^Quotient[n, 2] / 2 + DivisorSum[ n, EulerPhi[2 #] 2^(n/#) &] / (4 n)]; (* Michael Somos, Dec 19 2014 *)
|
|
PROG
|
(PARI) {a(n) = if( n<1, n==0, 2^(n\2) / 2 + sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (4*n))}; /* Michael Somos, Jun 03 2002 */
|
|
CROSSREFS
|
Cf. A000013. Bisections give A000117 and A092668.
The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.
Sequence in context: A316624 A318770 A284613 * A187213 A022476 A307240
Adjacent sequences: A000008 A000009 A000010 * A000012 A000013 A000014
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Better description from Christian G. Bower
More terms from David W. Wilson, Jan 13 2000
|
|
STATUS
|
approved
|
|
|
|