OFFSET
1,3
COMMENTS
a(n) is also the least value such that sequence increases and pairwise differences of distinct elements are all distinct.
LINKS
David W. Wilson, Table of n, a(n) for n = 1..1000
Alon Amit, What are some interesting proofs using transfinite induction?, Quora, Nov 15 2014.
LiJun Zhang, Bing Li, and LeeTang Cheng, Constructions of QC LDPC codes based on integer sequences, Science China Information Sciences, June 2014, Volume 57, Issue 6, pp 1-14.
Eric Weisstein's World of Mathematics, B2 Sequence.
FORMULA
a(n) = A005282(n) - 1. - Tyler Busby, Mar 16 2024
EXAMPLE
After 0, 1, a(3) cannot be 2 because 2+0 = 1+1, so a(3) = 3.
PROG
(Sage)
def A025582_list(n):
a = [0]
psums = set([0])
while len(a) < n:
a += [next(k for k in IntegerRange(a[-1]+1, infinity) if not any(i+k in psums for i in a+[k]))]
psums.update(set(i+a[-1] for i in a))
return a[:n]
print(A025582_list(20))
# D. S. McNeil, Feb 20 2011
(Python)
from itertools import count, islice
def A025582_gen(): # generator of terms
aset1, aset2, alist = set(), set(), []
for k in count(0):
bset2 = {k<<1}
if (k<<1) not in aset2:
for d in aset1:
if (m:=d+k) in aset2:
break
bset2.add(m)
else:
yield k
alist.append(k)
aset1.add(k)
aset2 |= bset2
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved