This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010672 A B_2 sequence: a(n) = least value such that sequence increases and pairwise sums of distinct elements are all distinct. 9
 0, 1, 2, 4, 7, 12, 20, 29, 38, 52, 73, 94, 127, 151, 181, 211, 257, 315, 373, 412, 475, 530, 545, 607, 716, 797, 861, 964, 1059, 1160, 1306, 1385, 1434, 1555, 1721, 1833, 1933, 2057, 2260, 2496, 2698, 2873, 3060, 3196, 3331, 3628, 3711, 3867, 4139, 4446, 4639 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Daniel Mondot and Giovanni Resta, Table of n, a(n) for n = 0..10000 (first 7611 terms from D. Mondot) FORMULA a(n) = A011185(n+1)-1. - Robert Israel, May 02 2016 MAPLE N:= 10^6: # to get all terms <= N A[0]:= 0: Delta:= {}: As:= {A[0]}: Cands:= {\$1..N}: for n from 1  while Cands <> {} do   A[n]:= min(Cands);   Cands:= Cands minus ({A[n]} union map(`+`, Delta, A[n]));   Delta:= Delta union map(t ->A[n] - t, As);   As:= As union {A[n]}; od: seq(A[i], i=0..n-1); # Robert Israel, May 02 2016 PROG (MATLAB) N = 3*10^8; % to get all terms < N Cands = ones(N, 1); Delta = []; A = []; n = 1; while nnz(Cands) > 0       A(n) = find(Cands, 1, 'first');       Cands(A(n)) = 0;       Rem = Delta(Delta <= N - A(n)) + A(n);       Cands(Rem) = 0;       Delta = union(Delta, -A(1:n-1)+A(n));       if mod(n, 10)==0        fprintf('a(%d)=%d\n', n, A(n));        toc;       end       n = n + 1; end A - 1 % Robert Israel, May 02 2016 CROSSREFS A025582 is a similar sequence, but there the pairwise sums of (not necessarily distinct) elements are all distinct. Cf. A011185. Sequence in context: A125892 A072642 A105856 * A122515 A193840 A036372 Adjacent sequences:  A010669 A010670 A010671 * A010673 A010674 A010675 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 01:14 EDT 2019. Contains 326136 sequences. (Running on oeis4.)