This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Mat

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section Mat


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


matchings, sequences related to :
matchings, see also 1-factorizations
matchings: see also tournaments
matchings:: A005154

mathematical symbols in OEIS: see spelling and notation

matrices, sequences related to :
matrices, (+1,-1): see matrices, binary
matrices, (0, 1): see matrices, binary
matrices, alternating sign , sequences related to :
matrices, alternating sign: (1) A005130*, A006366*, A003827, A005156, A005158, A005160-A005164, A048601, A050204, A051055, A057629, A059475, A059476, A059486
matrices, alternating sign: (2) A128445, A109074/A134357
matrices, alternating sign: see also Robbins numbers
matrices, anti-Hadamard: A005312, A005313
matrices, binary , sequences related to :
matrices, binary - refers to matrices with entries of both types, real (or complex) or over a finite field
see also matrices, inequivalent, below.
matrices, binary, 3 X n: A006381, A002727
matrices, binary, 4 X n: A006380, A006382, A006148
matrices, binary, n X n: complex eigenvalues: A098148
matrices, binary, n X n: A000595* (equivalence classes under S_n), A006383 (equivalence classes under S_n X S_n)
matrices, binary, n X n: det = 1: A086264
matrices, binary, n X n: diagonalizable: A091470, A091471, A091472
matrices, binary, n X n: eigenvalues all = 1 but not positive definite: see A085657
matrices, binary, n X n: invertible: A002884* (over GF(2)), A055165 ({0,1}, rational)
matrices, binary, n X n: maximal determinant: A003432*, A003433*, A013588; see also determinants, maximal
matrices, binary, n X n: normal: A055547, A055548, A055549
matrices, binary, n X n: positive definite: A085656 (entries 0,1, rational), A085657 (entries 2,1,0, symmetric), A084552 (entries 2,-1,0, symmetric), A080858
matrices, binary, n X n: positive eigenvalues: A003024 (entries 0,1), A085506 (entries 0, +-1)
matrices, binary, n X n: positive semi-definite: A038379 (entries 0,1, rational), A085658 (entries 2,1,0, symmetric), A084553 (entries 2,-1,0, symmetric), A083029
matrices, binary, n X n: primitive: A070322
matrices, binary, n X n: singular: A000409*, A000410*, A046747* (rational)
matrices, binary, n X n: with at most k 1's in each row and column: A002720, A197458, A247158
matrices, binary, n X n: with k 1's in each row and column: A000142, A001499, A001501, A058528, A075754, A008300
matrices, binary, n X n: zero permanent: A088672
matrices, binary, permanents of: A000166, A000255, A052655, A087981, A087982, A087983, A088672
matrices, binary, upper triangular: A005321*
matrices, binary, which are squares: A121231, A225371, A226321, A266462, A274313, A274314
matrices, binary, with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
matrices, binary, with n 1's: A049311*
matrices, binary, with no 2 adjacent 1's: A006506*
matrices, binary, with no zero rows or columns: A048291, A054976
matrices, binary: see also Hadamard matrices
matrices, binary: see also A002820, A000804, A000805, A003509, A005991, A002724, A005019, A005020
matrices, binary: see also matrices, ternary
matrices, conference: A000952*
matrices, cyclic: A000804, A000805
matrices, Hadamard: see Hadamard matrices
matrices, Hilbert, A005249
matrices, incidence, number of: A002725, A002728 (see also just below)
matrices, inequivalent under permutations of rows and columns, entries in Z/mZ, number of:
A353585: inequivalent n X k matrices over Z/mZ; special cases:
A028657: inequivalent n X k binary matrices, special cases:
A002723 (size n X 2), A002727 (size n X 3), A006148 (size n X 4), A052264 (size n X 5),
A002724 (size n X n), A002725 (size n X (n+1)), A002728 (size n X (n+2))
A246106: size n X n, over Z/mZ; diagonal: A246107; columns m = 2, 3, 4, ..., 10: A002724 (m = 2),
A052269 (m = 3), A052271 (4), A052272 (5), A246112 (6), A246113 (7), A246114 (8), A246115 (9), A246116 (10).
Rows n = 1 - 10: A001477, A039623, A058001, A058002, A058003, A058004, A246108, A246109, A246110, A246111.
A256069: size n X n, exactly m different entries. Diagonal: A256070.
A242106: size n X n, exactly m different symbols, equivalence also modulo permutations of the symbol set,
A242095: size n X n, entries in Z/mZ, equivalence also modulo permutations of the symbol set.
diagonal: A091058, columns: A091059 (m = 2), A091060 (m = 3), A091061 (m = 4),
columns m = 5 - 10: A091062 (5), A246122 (6), A246123 (7), A246124 (8), A246125 (9), A246126 (10).
matrices, modular: A005045, A006045, A005353
matrices, normal: A055547, A055548, A055549
matrices, norms of: A004141
matrices, number of: see matrices, inequivalent
matrices, Pascal: A006135, A006136
matrices, random, A001171
matrices, Schur, A003112
matrices, stochastic, A006847, A006848, A000987, A000985, A001495, A000681, A000986, A001500, A001499, A001496, A001501, A005466, A003438, A005467, A003439
matrices, ternary - refers to matrices with entries of both types, real (or complex) or over a finite field
matrices, ternary (i.e., over Z/3Z), n X n: A053290, A056989; see also matrices, inequivalent
matrices, ternary (here: {0,1,-1}-valued), n X n, Wesp's condition: A204821*, A204809
matrices, ternary, see also matrices, binary and matrices, inequivalent
matrices:: A002136, A005020, A005045, A007411, A006045, A005353, A005019

matrix, coprime?: A005326*

matroids , sequences related to :
matroids, triangle of number of: A034327, A034328, A058669, A053534, A058710, A058711, A058716, A058717, A058720, A058730
matroids: A002773*, A055545*, A005387*, A056642*, A058673*, A058712*, A058718*, A058721*
matroids: see also A034329, A034330, A034331, A034332, A034333, A034334, A034335, A034336
Matula-Göbel numbers , sequences related to :
Matula-Göbel numbers , sequences related to , (Alternative spelling "Matula-Goebel numbers", also known just as "Matula-numbers". Here tree refers to nonoriented rooted tree, and T(n) is the rooted tree with Matula-Göbel number n).
Matula-Göbel numbers: A061773*
Matula-Göbel numbers, of binary trees: A111299.
Matula-Göbel numbers, of central/bicentral trees: A198330, A198331
Matula-Göbel numbers, of generalized Bethe trees: A214577.
Matula-Göbel numbers, of rooted identity trees: A276625.
Matula-Göbel numbers, of rooted path tree of n+1 vertices: A007097.
Matula-Göbel numbers, of rooted path tree of n vertices, with 3 pendant edges joined at the top: A057452.
Matula-Göbel numbers, of rooted trees, automorphisms and bijections based on: A235485, A235487, A235489, A235199, A235201.
Matula-Göbel numbers, of trees encoded by A014486; binary/general: A127302, A127301.
Matula-Göbel numbers, of trees having only vertices of particular degree parity: A190175, A298120, A298126.
Matula-Göbel numbers, of trees obtained after removing from T(n) the leaves, together with their incident edges: A198328.
Matula-Göbel numbers, of trees obtained after removing from T(n) the vertices of degree one, together with their incident edges: A198329.
Matula-Göbel numbers, of trees obtained by replacing each edge of T(n) by a path of length 2: A257538.
Matula-Göbel numbers, of trees that have/have not a perfect matching: A193405, A193406.
Matula-Göbel numbers, of trees that have only vertices of degree 1 and of maximal degree: A198323
Matula-Göbel numbers, of trees with 8 vertices: A214572.
Matula-Göbel numbers, of trees with all leaves at the same level: A184155.
Matula-Göbel numbers, of trees with eigenvalue 2 of the Laplacian matrix: A193402.
Matula-Göbel numbers, of trees with no vertices with more than one non-leaf branch: A209638.
Matula-Göbel numbers, of trees with palindromic k-matchings: A202854.
Matula-Göbel numbers, of trees with palindromic Wiener polynomials: A198322.
Matula-Göbel numbers, smallest/largest with n nodes: A005517, A005518.
Matula-Göbel numbers, the largest of the M-indices of the trees with n nodes: A235112.
Matula-Göbel numbers, various indices, depth (height): A109082.
Matula-Göbel numbers, various indices, diameter (largest distance between two vertices): A196058.
Matula-Göbel numbers, various indices, distance from the root to the first branching node or the top: A078442.
Matula-Göbel numbers, various indices, domination number: A212632.
Matula-Göbel numbers, various indices, external path length: A196048.
Matula-Göbel numbers, various indices, maximal number of distinct rooted trees obtained from T(N) by adding one pendant edge at one of its vertices: A214567.
Matula-Göbel numbers, various indices, maximum edge-degree/vertex-degree: A191517, A196046.
Matula-Göbel numbers, various indices, maximum escape distance over the vertices: A184169.
Matula-Göbel numbers, various indices, number of branching nodes: A196049.
Matula-Göbel numbers, various indices, number of chains: A184162.
Matula-Göbel numbers, various indices, number of dominating subsets: A212630, A212631*.
Matula-Göbel numbers, various indices, number of edges: A196050.
Matula-Göbel numbers, various indices, number of independent subsets containing/not containing the root: A228731, A228732.
Matula-Göbel numbers, various indices, number of independent (vertex) subsets: A184165*, A212623.
Matula-Göbel numbers, various indices, number of largest independent vertex subsets: A212626.
Matula-Göbel numbers, various indices, number of leaf-parents: A196062.
Matula-Göbel numbers, various indices, number of matchings (independent edge subsets): A193403, A193404*, A202853, A347966, A347967.
Matula-Göbel numbers, various indices, number of maximal independent vertex subsets: A212627, A212628*.
Matula-Göbel numbers, various indices, number of nodes: A061775*, A325544, A325611.
Matula-Göbel numbers, various indices, number of nonroot vertices of degree 2: A191400.
Matula-Göbel numbers, various indices, number of ordered trees isomorphic to the rooted tree T(n): A206487.
Matula-Göbel numbers, various indices, number of pendant/quasipendant vertices: A196067, A206498.
Matula-Göbel numbers, various indices, number of root subtrees: A184160.
Matula-Göbel numbers, various indices, number of sibling pairs: A196057.
Matula-Göbel numbers, various indices, number of star-trees: A214566.
Matula-Göbel numbers, various indices, number of subtrees: A184161.
Matula-Göbel numbers, various indices, number of subtrees with at least one edge: A257537.
Matula-Göbel numbers, various indices, number of vertices in all independent vertex subsets: A212624.
Matula-Göbel numbers, various indices, number of vertices in all maximal independent vertex subsets: A212629.
Matula-Göbel numbers, various indices, number of vertices in the largest independent vertex subset: A212625.
Matula-Göbel numbers, various indices, number of vertices of even degree: A190174.
Matula-Göbel numbers, various indices, number of vertices of outdegree >=2: A191515.
Matula-Göbel numbers, various indices, number of vertices that have largest escape distance in T(n): A184170.
Matula-Göbel numbers, various indices, number of ways to take apart the rooted tree T(n) by sequentially removing terminal edges: A206494.
Matula-Göbel numbers, various indices, path length: A196047.
Matula-Göbel numbers, various indices, product, over all vertices v of T(n) of the number of vertices in the subtree with root v: A206493.
Matula-Göbel numbers, various indices, radius: A198337.
Matula-Göbel numbers, various indices, sum of escape distances of all vertices: A184168.
Matula-Göbel numbers, various indices, sum of lengths of all directed paths: A198326.
Matula-Göbel numbers, various indices, sum of the degrees of the nodes at level one: A196052.
Matula-Göbel numbers, various indices, sum of the distances between all unordered pairs of vertices of degree 2, 3: A212618, A212619.
Matula-Göbel numbers, various indices, the 1st/2nd multiplicative Zagreb index: A196065, A196064.
Matula-Göbel numbers, various indices, the 1st/2nd Zagreb index: A196053, A196054.
Matula-Göbel numbers, various indices, the Balaban centric index: A198334.
Matula-Göbel numbers, various indices, the Connes-Moscovici weight: A206496.
Matula-Göbel numbers, various indices, the determinant/permanent of the distance matrix: A206488, A206489.
Matula-Göbel numbers, various indices, the difference between the levels of the highest and lowest leaves: A184159.
Matula-Göbel numbers, various indices, the eccentric connectivity index: A206490.
Matula-Göbel numbers, various indices, the Gordon-Scantlebury index: A224458.
Matula-Göbel numbers, various indices, the hyper-Wiener index: A196060.
Matula-Göbel numbers, various indices, the irregularity: A238413.
Matula-Göbel numbers, various indices, the level of the lowest leaf: A184166.
Matula-Göbel numbers, various indices, the matching number: A206483.
Matula-Göbel numbers, various indices, the multiplicative sum Zagreb index: A238412
Matula-Göbel numbers, various indices, the multiplicative Wiener index: A196061.
Matula-Göbel numbers, various indices, the Narumi-Katayama index: A196063
Matula-Göbel numbers, various indices, the number of rooted trees that are isomorphic as trees to the rooted tree with Matula number n (n >=1): A235122.
Matula-Göbel numbers, various indices, the overall first/second Zagreb index: A212621, A212622.
Matula-Göbel numbers, various indices, the overall hyper-Wiener index: A198341.
Matula-Göbel numbers, various indices, the overall Wiener index: A198340.
Matula-Göbel numbers, various indices, the Platt index: A198332
Matula-Göbel numbers, various indices, the reverse Wiener index: A196066.
Matula-Göbel numbers, various indices, the (rounded) 2nd modified Zagreb index: A238408.
Matula-Göbel numbers, various indices, the rounded atom-bond connectivity (ABC): A235123.
Matula-Göbel numbers, various indices, the (rounded) augmented Zagreb index: A238409.
Matula-Göbel numbers, various indices, the (rounded) first geometric-arithmetic index: A238407.
Matula-Göbel numbers, various indices, the rounded harmonic index: A235124.
Matula-Göbel numbers, various indices, the rounded Randic index: A238418.
Matula-Göbel numbers, various indices, the rounded sum-connectivity index: A235125
Matula-Göbel numbers, various indices, the smallest of the Matula numbers of the rooted trees that are isomorphic as trees to T(n): A257539.
Matula-Göbel numbers, various indices, the Strahler number: A214574.
Matula-Göbel numbers, various indices, the sum of the distances between all unordered pairs of branch vertices: A206499.
Matula-Göbel numbers, various indices, the sum of the even/odd distances: A184157, A184158.
Matula-Göbel numbers, various indices, the symmetry factor of the rooted tree: A206497.
Matula-Göbel numbers, various indices, the terminal Wiener index: A196055, A348959.
Matula-Göbel numbers, various indices, the total walk count: A206486.
Matula-Göbel numbers, various indices, the Wiener index: A196051.
Matula-Göbel numbers, various indices, the Wiener index of the graph obtained by applying Mycielski's construction to T(n): A228599.
Matula-Göbel numbers, various indices, the Wiener polarity index: A184156.
Matula-Göbel numbers, various indices, visitation length: A196068.
Matula-Göbel numbers, various indices, width (number of non-root vertices having degree 1): A109129*, A325543, A325612, A342507.

Maundy cake: A006022
Max Alekseyev's problem: see doubling substrings
max(x,y): A003984*, A051125*
maximal digit in n in bases 3 through 12: A190592, A190593, A190594, A190595, A190596, A190597, A190598, A054055, A190599, A190600.
maximal length of binary codes: see coding theoretic functions A(n,d) and A(n,d,w)
maximal intersecting families of sets: A007006, A007007, A007008

McKay-Thompson sequences or series for Monster simple group, sequences related to :
McKay-Thompson series: see also modular forms, etc.
McKay-Thompson series of class 001A: A000521, A007240, A014708
McKay-Thompson series of class 001a: A154272
McKay-Thompson series of class 002A: A007241, A007267, A045478, A101558
McKay-Thompson series of class 002a: A007242
McKay-Thompson series of class 002B: A007191, A007246, A045479
McKay-Thompson series of class 002b: A154272
McKay-Thompson series of class 003A: A007243, A030197, A045480
McKay-Thompson series of class 003B: A007244, A030182, A045481
McKay-Thompson series of class 003C: A007245
McKay-Thompson series of class 004A: A007246, A045479, A107080, A134786
McKay-Thompson series of class 004a: A007250
McKay-Thompson series of class 004B: A007247
McKay-Thompson series of class 004C: A007248
McKay-Thompson series of class 004D: A007249
McKay-Thompson series of class 005A: A007251, A045482
McKay-Thompson series of class 005a: A007253
McKay-Thompson series of class 005B: A007252, A045483
McKay-Thompson series of class 006A: A007254, A045484
McKay-Thompson series of class 006a: A007260
McKay-Thompson series of class 006B: A007255, A045485
McKay-Thompson series of class 006b: A007261
McKay-Thompson series of class 006C: A007256, A045486
McKay-Thompson series of class 006c: A007262
McKay-Thompson series of class 006D: A007257, A045487
McKay-Thompson series of class 006d: A007263
McKay-Thompson series of class 006E: A007258, A045488, A105559, A128632, A128633
McKay-Thompson series of class 006F: A007259
McKay-Thompson series of class 007A: A007264, A030183, A045489
McKay-Thompson series of class 007B: A030181, A052240
McKay-Thompson series of class 008A: A007265, A045490, A134785
McKay-Thompson series of class 008a: A112144
McKay-Thompson series of class 008b: A058088
McKay-Thompson series of class 008B: A112142
McKay-Thompson series of class 008C: A052241
McKay-Thompson series of class 008c: A112145
McKay-Thompson series of class 008D: A112143
McKay-Thompson series of class 008E: A029841
McKay-Thompson series of class 008F: A022601
McKay-Thompson series of class 009A: A007266, A045491
McKay-Thompson series of class 009a: A058092
McKay-Thompson series of class 009B: A058091
McKay-Thompson series of class 009b: A112146
McKay-Thompson series of class 009c: A058095
McKay-Thompson series of class 009d: A058096
McKay-Thompson series of class 010A: A058097
McKay-Thompson series of class 010a: A058102
McKay-Thompson series of class 010B: A058098
McKay-Thompson series of class 010b: A058103
McKay-Thompson series of class 010C: A058099
McKay-Thompson series of class 010c: A058204
McKay-Thompson series of class 010D: A058100, A132130
McKay-Thompson series of class 010E: A058101, A138516, A139381
McKay-Thompson series of class 011A: A003295, A058205, A134784, A128525
McKay-Thompson series of class 012a: A058489
McKay-Thompson series of class 012A: A112147
McKay-Thompson series of class 012B.: A045488, A007258, A112148
McKay-Thompson series of class 012b: A058490
McKay-Thompson series of class 012C: A058206
McKay-Thompson series of class 012c: A058491
McKay-Thompson series of class 012d: A058492
McKay-Thompson series of class 012D: A101127
McKay-Thompson series of class 012E: A058483
McKay-Thompson series of class 012e: A058493
McKay-Thompson series of class 012F: A058484
McKay-Thompson series of class 012f: A112149
McKay-Thompson series of class 012G: A058485
McKay-Thompson series of class 012H: A058486
McKay-Thompson series of class 012I: A058487
McKay-Thompson series of class 012J: A022599
McKay-Thompson series of class 013A: A034318, A034319
McKay-Thompson series of class 013B: A058496
McKay-Thompson series of class 014A: A058497, A134782
McKay-Thompson series of class 014a: A058505
McKay-Thompson series of class 014B: A058503
McKay-Thompson series of class 014b: A058506
McKay-Thompson series of class 014C: A058504
McKay-Thompson series of class 014c: A058507
McKay-Thompson series of class 015A: A058508, A134783
McKay-Thompson series of class 015a: A058512
McKay-Thompson series of class 015B: A058509
McKay-Thompson series of class 015b: A058513
McKay-Thompson series of class 015C: A058510
McKay-Thompson series of class 015D: A058511
McKay-Thompson series of class 016A: A058514
McKay-Thompson series of class 016a: A112150
McKay-Thompson series of class 016B: A029839
McKay-Thompson series of class 016b: A112151
McKay-Thompson series of class 016C: A058516
McKay-Thompson series of class 016c: A112152
McKay-Thompson series of class 016d: A082304
McKay-Thompson series of class 016e: A058526
McKay-Thompson series of class 016f: A112153
McKay-Thompson series of class 016g: A112154
McKay-Thompson series of class 016h: A112155
McKay-Thompson series of class 017A: A058530
McKay-Thompson series of class 018A: A058531
McKay-Thompson series of class 018a: A058536
McKay-Thompson series of class 018B: A058532
McKay-Thompson series of class 018b: A058537
McKay-Thompson series of class 018C: A058533
McKay-Thompson series of class 018c: A058538
McKay-Thompson series of class 018d: A058539
McKay-Thompson series of class 018D: A062242
McKay-Thompson series of class 018E: A058535
McKay-Thompson series of class 018e: A058543
McKay-Thompson series of class 018f: A058544
McKay-Thompson series of class 018g: A112156
McKay-Thompson series of class 018h: A058546
McKay-Thompson series of class 018i: A112157
McKay-Thompson series of class 018j: A058548
McKay-Thompson series of class 019A: A058549, A136569
McKay-Thompson series of class 020a: A058556
McKay-Thompson series of class 020A: A112158
McKay-Thompson series of class 020B: A058551
McKay-Thompson series of class 020b: A058557
McKay-Thompson series of class 020c: A058558
McKay-Thompson series of class 020C: A112159
McKay-Thompson series of class 020D: A058553
McKay-Thompson series of class 020d: A058559
McKay-Thompson series of class 020E: A058554
McKay-Thompson series of class 020e: A058560
McKay-Thompson series of class 020F: A058555
McKay-Thompson series of class 021A: A058563
McKay-Thompson series of class 021B: A058564
McKay-Thompson series of class 021C: A058565
McKay-Thompson series of class 021D: A058566
McKay-Thompson series of class 022A: A058567
McKay-Thompson series of class 022a: A058569
McKay-Thompson series of class 022B: A058568
McKay-Thompson series of class 023A: A058570, A134781
McKay-Thompson series of class 024A: A058571, A058572
McKay-Thompson series of class 024a: A058584
McKay-Thompson series of class 024B: A058572
McKay-Thompson series of class 024b: A112162
McKay-Thompson series of class 024C: A058573
McKay-Thompson series of class 024c: A062243
McKay-Thompson series of class 024D: A058574
McKay-Thompson series of class 024d: A058587
McKay-Thompson series of class 024E: A112160
McKay-Thompson series of class 024e: A112163
McKay-Thompson series of class 024F: A058576
McKay-Thompson series of class 024f: A058589
McKay-Thompson series of class 024G: A112161
McKay-Thompson series of class 024g: A112164
McKay-Thompson series of class 024H: A058578
McKay-Thompson series of class 024h: A112165
McKay-Thompson series of class 024I: A058579, A138688
McKay-Thompson series of class 024i: A112166
McKay-Thompson series of class 024J: A022597
McKay-Thompson series of class 024j: A112167
McKay-Thompson series of class 025A: A058594
McKay-Thompson series of class 025a: A096563
McKay-Thompson series of class 026A: A058596
McKay-Thompson series of class 026a: A058598
McKay-Thompson series of class 026B: A058597
McKay-Thompson series of class 027A: A058599
McKay-Thompson series of class 027a: A058600
McKay-Thompson series of class 027B: A058599
McKay-Thompson series of class 027b: A058601
McKay-Thompson series of class 027c: A062246
McKay-Thompson series of class 027d: A058604
McKay-Thompson series of class 027e: A112168
McKay-Thompson series of class 028A: A058606
McKay-Thompson series of class 028a: A058610
McKay-Thompson series of class 028B: A112169
McKay-Thompson series of class 028C: A058608
McKay-Thompson series of class 028D: A058609
McKay-Thompson series of class 029A: A058611, A136570
McKay-Thompson series of class 030A: A058612
McKay-Thompson series of class 030a: A058619
McKay-Thompson series of class 030B: A058613
McKay-Thompson series of class 030b: A058623
McKay-Thompson series of class 030C: A058614
McKay-Thompson series of class 030c: A058624
McKay-Thompson series of class 030D: A058615
McKay-Thompson series of class 030d: A058625
McKay-Thompson series of class 030E: A058616
McKay-Thompson series of class 030e: A058626
McKay-Thompson series of class 030F: A058617
McKay-Thompson series of class 030f: A112170
McKay-Thompson series of class 030G: A058618, A135213
McKay-Thompson series of class 031A: A058628
McKay-Thompson series of class 032A: A058629
McKay-Thompson series of class 032a: A107635
McKay-Thompson series of class 032B: A058630
McKay-Thompson series of class 032b: A058632
McKay-Thompson series of class 032c: A112171
McKay-Thompson series of class 032d: A112172
McKay-Thompson series of class 032e: A082303
McKay-Thompson series of class 033A: A058636
McKay-Thompson series of class 033B: A058637
McKay-Thompson series of class 034A: A058638
McKay-Thompson series of class 034a: A058639
McKay-Thompson series of class 035A: A058640
McKay-Thompson series of class 035a: A058643
McKay-Thompson series of class 035B: A058641
McKay-Thompson series of class 036A: A058644
McKay-Thompson series of class 036a: A058648
McKay-Thompson series of class 036B: A062244
McKay-Thompson series of class 036b: A112173
McKay-Thompson series of class 036C: A058646
McKay-Thompson series of class 036c: A058650
McKay-Thompson series of class 036D: A058647
McKay-Thompson series of class 036d: A112174
McKay-Thompson series of class 036e: A112175
McKay-Thompson series of class 036f: A112176
McKay-Thompson series of class 036g: A103262
McKay-Thompson series of class 036h: A112177
McKay-Thompson series of class 036i: A112178
McKay-Thompson series of class 038A: A058657
McKay-Thompson series of class 038a: A058658
McKay-Thompson series of class 039A: A058659
McKay-Thompson series of class 039B: A058660
McKay-Thompson series of class 039C: A058661
McKay-Thompson series of class 040A: A058662
McKay-Thompson series of class 040a: A112180
McKay-Thompson series of class 040b: A058666
McKay-Thompson series of class 040B: A112179
McKay-Thompson series of class 040C: A058664
McKay-Thompson series of class 040c: A112181
McKay-Thompson series of class 040d: A112182
McKay-Thompson series of class 040e: A112183
McKay-Thompson series of class 041A: A058670
McKay-Thompson series of class 042A: A058671
McKay-Thompson series of class 042a: A058675
McKay-Thompson series of class 042B: A058672
McKay-Thompson series of class 042b: A058676
McKay-Thompson series of class 042c: A058677
McKay-Thompson series of class 042C: A102314
McKay-Thompson series of class 042D: A058674
McKay-Thompson series of class 042d: A058678
McKay-Thompson series of class 044A: A058679
McKay-Thompson series of class 044a: A058680
McKay-Thompson series of class 044b: A112184
McKay-Thompson series of class 044c: A058683
McKay-Thompson series of class 045A: A058684
McKay-Thompson series of class 045a: A058685
McKay-Thompson series of class 045b: A058686
McKay-Thompson series of class 045c: A112185
McKay-Thompson series of class 046A: A058688
McKay-Thompson series of class 046B: A058688
McKay-Thompson series of class 046C: A058689
McKay-Thompson series of class 046D: A058689
McKay-Thompson series of class 047A: A058690
McKay-Thompson series of class 048A: A058691
McKay-Thompson series of class 048a: A112186
McKay-Thompson series of class 048b: A112187
McKay-Thompson series of class 048c: A112188
McKay-Thompson series of class 048d: A112189
McKay-Thompson series of class 048e: A112190
McKay-Thompson series of class 048f: A112191
McKay-Thompson series of class 048g: A073252
McKay-Thompson series of class 048h: A112192
McKay-Thompson series of class 049a: A058700
McKay-Thompson series of class 049a: A136560
McKay-Thompson series of class 050a: A034320
McKay-Thompson series of class 050A: A058701
McKay-Thompson series of class 050a: A058703
McKay-Thompson series of class 051A: A058704
McKay-Thompson series of class 052A: A058705
McKay-Thompson series of class 052a: A058707
McKay-Thompson series of class 052B: A058706
McKay-Thompson series of class 054A: A058708
McKay-Thompson series of class 054a: A058709
McKay-Thompson series of class 054b: A112193
McKay-Thompson series of class 054c: A112194
McKay-Thompson series of class 054d: A112195
McKay-Thompson series of class 055A: A058713
McKay-Thompson series of class 056A: A058714
McKay-Thompson series of class 056a: A112196
McKay-Thompson series of class 056B: A097793
McKay-Thompson series of class 056b: A112197
McKay-Thompson series of class 056c: A112198
McKay-Thompson series of class 057A: A112199
McKay-Thompson series of class 058a: A058723
McKay-Thompson series of class 059A: A058724
McKay-Thompson series of class 060A: A058725
McKay-Thompson series of class 060a: A112200
McKay-Thompson series of class 060B: A058726
McKay-Thompson series of class 060b: A058732
McKay-Thompson series of class 060C: A058727
McKay-Thompson series of class 060c: A112201
McKay-Thompson series of class 060D: A058728, A143751
McKay-Thompson series of class 060d: A112202
McKay-Thompson series of class 060E: A058729
McKay-Thompson series of class 060e: A112203
McKay-Thompson series of class 060F: A096938
McKay-Thompson series of class 062A: A058736
McKay-Thompson series of class 063a: A112204
McKay-Thompson series of class 064a: A070048
McKay-Thompson series of class 066A: A058739
McKay-Thompson series of class 066a: A058741
McKay-Thompson series of class 066B: A058740
McKay-Thompson series of class 068A: A058742
McKay-Thompson series of class 069A: A058743
McKay-Thompson series of class 070A: A058744
McKay-Thompson series of class 070a: A058746
McKay-Thompson series of class 070B: A058745
McKay-Thompson series of class 071A: A034322
McKay-Thompson series of class 072a: A112205
McKay-Thompson series of class 072b: A112206
McKay-Thompson series of class 072c: A112207
McKay-Thompson series of class 072d: A112208
McKay-Thompson series of class 072e: A003105
McKay-Thompson series of class 076a: A058753
McKay-Thompson series of class 078A: A058754
McKay-Thompson series of class 078B: A058755
McKay-Thompson series of class 080a: A112209
McKay-Thompson series of class 082a: A112210
McKay-Thompson series of class 084A: A058758
McKay-Thompson series of class 084a: A058761
McKay-Thompson series of class 084B: A112211
McKay-Thompson series of class 084C: A112212
McKay-Thompson series of class 087A: A058762
McKay-Thompson series of class 088A: A112213
McKay-Thompson series of class 090a: A112214
McKay-Thompson series of class 090b: A112215
McKay-Thompson series of class 092A: A112216
McKay-Thompson series of class 093A: A112217
McKay-Thompson series of class 094A: A058768
McKay-Thompson series of class 095A: A058769
McKay-Thompson series of class 096a: A000700
McKay-Thompson series of class 102a: A112218
McKay-Thompson series of class 104A: A112219
McKay-Thompson series of class 105A: A058773
McKay-Thompson series of class 110A: A058774
McKay-Thompson series of class 117a: A112220
McKay-Thompson series of class 119A: A058776
McKay-Thompson series of class 120a: A112221
McKay-Thompson series of class 126a: A112222
McKay-Thompson series of class 132a: A112223
McKay-Thompson series of class 140a: A112224

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]