login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206497 The symmetry factor of the rooted tree with Matula-Goebel number n. 3
1, 1, 1, 2, 1, 1, 2, 6, 2, 1, 1, 2, 1, 2, 1, 24, 2, 2, 6, 2, 2, 1, 2, 6, 2, 1, 6, 4, 1, 1, 1, 120, 1, 2, 2, 4, 2, 6, 1, 6, 1, 2, 2, 2, 2, 2, 1, 24, 8, 2, 2, 2, 24, 6, 1, 12, 6, 1, 2, 2, 2, 1, 4, 720, 1, 1, 6, 4, 2, 2, 2, 12, 2, 2, 2, 12, 2, 1, 1, 24, 24, 1, 2, 4, 2, 2, 1, 6, 6, 2, 2, 4, 1, 1, 6, 120 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
The symmetry factor of a rooted tree T is defined to be the number of indistinguishable permutations of the branches of T. For example, for the rooted tree obtained by identifying the roots of two copies of Y, the symmetry factor is 8; indeed the two branches of the first Y admit 2 indistinguishable permutations, the two branches of the second Y admit 2 indistinguishable permutations, and the 2 Y's admit 2 indistinguishable permutations (2*2*2=8).
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T (rooted at the root of T).
LINKS
Ch. Brouder, Runge-Kutta methods and renormalization, arXiv:hep-th/9904014, 1999; Eur. Phys. J. C 12, 2000, 521-534.
D. J. Broadhurst and D. Kreimer, Renormalization automated by Hopf algebra, arXiv:hep-th/9810087, 1998; J. Symbolic Computation, 27, 1999, 581-600.
E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
M. E. Hoffman, An analogue of covering space theory for ranked posets, The Electronic J. of Combinatorics, 8, 2001, #R32.
FORMULA
a(1)=1; if n=p(t) (= the t-th prime), then a(n) = a(t); if n = p^u q^v ... is the prime factorization of n, then a(n) =(u!a(p)^u)(v!a(q)^v)... . (see Eq (2) in the Brouder reference).
If m and n are relatively prime, then a(mn) = a(m)a(n).
a(1)=1; if n=p^u, where p is the t-th prime, then a(n) = u! a(t)^u; if n=rs, r,s>=2, gcd(r,s)=1, then a(n)=a(r)a(s). Both Maple programs are based on these recurrence relations.
EXAMPLE
a(2)=1 because the rooted tree with Matula-Goebel number 2 is the 1-edge tree I; a(4)=2 because the rooted tree with Matula-Goebel number 4 is V and there are 2 indistinguishable permutations of the branches.
MAPLE
with(numtheory): a := proc (n) if n = 1 then 1 elif nops(factorset(n)) = 1 then factorial(log[factorset(n)[1]](n))*a(pi(factorset(n)[1]))^log[factorset(n)[1]](n) else a(expand(op(1, ifactor(n))))*a(expand(n/op(1, ifactor(n)))) end if end proc: seq(a(n), n = 1 .. 160);
with(numtheory): SF := proc (n) local IF, A, FIF, FP, EFP: IF := proc (n) options operator, arrow: ifactors(n) end proc: A := proc (n) options operator, arrow: op(2, IF(n)) end proc: FIF := proc (n) options operator, arrow: op(1, A(n)) end proc: FP := proc (n) options operator, arrow: op(1, FIF(n)) end proc: EFP := proc (n) options operator, arrow: op(2, FIF(n)) end proc: if n = 1 then 1 elif bigomega(n) = 1 then SF(pi(n)) elif nops(A(n)) = 1 then factorial(EFP(n))*SF(pi(FP(n)))^EFP(n) else SF(FP(n)^EFP(n))*SF(n/FP(n)^EFP(n)) end if end proc: seq(SF(n), n = 1 .. 160); # Emeric Deutsch, Apr 30, 2015
MATHEMATICA
a[n_] := a[n] = If[n==1, 1, If[PrimeQ[n], a[PrimePi[n]], Product[{p, e} = pe; e! a[p]^e, {pe, FactorInteger[n]}]]];
a /@ Range[1, 100] (* Jean-François Alcover, Sep 25 2019 *)
PROG
(Haskell)
import Data.List (genericIndex)
a206497 n = genericIndex a206497_list (n - 1)
a206497_list = 1 : g 2 where
g x = y : g (x + 1) where
y | t > 0 = a206497 t
| otherwise = product $ zipWith (\p e -> a000142 e * a206497 p ^ e)
(a027748_row x) (a124010_row x)
where t = a049084 x
-- Reinhard Zumkeller, Sep 03 2013
(PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my([p, e]=f[i, ]); e!*a(primepi(p))^e)} \\ Andrew Howroyd, Aug 01 2018
CROSSREFS
Cf. A049084, A027748, A124010, A000142, A276625 (indices of 1's).
Sequence in context: A156588 A278543 A113186 * A123218 A298608 A327815
KEYWORD
nonn,mult,changed
AUTHOR
Emeric Deutsch, May 29 2012
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Aug 01 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:56 EDT 2024. Contains 370952 sequences. (Running on oeis4.)