This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107635 McKay-Thompson series of class 32a for the Monster group. 4
 1, 3, 3, 4, 9, 12, 15, 21, 30, 43, 54, 69, 94, 123, 153, 193, 252, 318, 391, 486, 609, 754, 918, 1119, 1376, 1680, 2019, 2432, 2946, 3540, 4220, 5034, 6015, 7157, 8463, 9999, 11835, 13956, 16374, 19206, 22542, 26376, 30750, 35829, 41745, 48526, 56250 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(1/8) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^3 in powers of q. Expansion of chi(x)^3 = phi(x) / psi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions. Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^3 - v) * (v^3 - u) - 9*u*v. Euler transform of period 4 sequence [3, -3, 3, 0, ...]. G.f.: Product_{k>0} (1 + (-x)^k)^-3. a(n) = (-1)^n * A022598(n). a(n) ~ exp(Pi*sqrt(n/2)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015 G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018 EXAMPLE G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 9*x^4 + 12*x^5 + 15*x^6 + 21*x^7 + ... T32a = 1/q + 3*q^7 + 3*q^15 + 4*q^23 + 9*q^31 + 12*q^39 + 15*q^47 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^2 / (QPochhammer[ x] QPochhammer[ x^4]))^3, {x, 0, n}]; (* Michael Somos, Jun 29 2014 *) nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^3, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^3, n))}; CROSSREFS Cf. A022598. Sequence in context: A045794 A065678 A022598 * A132319 A130626 A175796 Adjacent sequences:  A107632 A107633 A107634 * A107636 A107637 A107638 KEYWORD nonn AUTHOR Michael Somos, May 18 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 16:44 EST 2019. Contains 319235 sequences. (Running on oeis4.)