login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058537
McKay-Thompson series of class 18b for the Monster group.
4
1, 7, 8, 22, 42, 63, 106, 190, 267, 428, 652, 932, 1367, 2017, 2774, 3950, 5539, 7541, 10342, 14184, 18889, 25435, 33974, 44720, 58952, 77550, 100546, 130780, 169273, 217230, 278636, 356566, 452544, 574548, 726938, 914742, 1149685, 1441787, 1798740, 2242436
OFFSET
0,2
COMMENTS
Convolution inverse is A258941. - Vaclav Kotesovec, Nov 07 2015
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of (27 * x * (b(x)^3 + c(x)^3)^2 / (b(x) * c(x))^3)^(1/6) in powers of x where b(), c() are cubic AGM theta functions. - Michael Somos, Jun 16 2012
Expansion of q^(1/6) * a(q) / (b(q) * c(q)/3)^(1/2) in powers of q where a(), b(), c() are cubic AGM theta functions. - Michael Somos, Aug 20 2012
Convolution square is A058092. Convolution sixth power is A030197. - Michael Somos, Jun 16 2012
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Nov 07 2015
EXAMPLE
1 + 7*x + 8*x^2 + 22*x^3 + 42*x^4 + 63*x^5 + 106*x^6 + 190*x^7 + 267*x^8 + ...
T18b = 1/q + 7*q^5 + 8*q^11 + 22*q^17 + 42*q^23 + 63*q^29 + 106*q^35 + ...
MATHEMATICA
CoefficientList[Series[(QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3) / (QPochhammer[x, x]*QPochhammer[x^3, x^3]^2), {x, 0, 50}], x] (* Vaclav Kotesovec, Nov 07 2015 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; A:= q^(-1/6)*eta[q]*eta[q^3]^2/(eta[q]^3 + 9*eta[q^9]^3); CoefficientList[Series[1/A, {q, 0, 60}], q] (* G. C. Greubel, Jun 22 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( ((1 + 27 * x * A)^2 / A)^(1/6), n))} \\ Michael Somos, Jun 16 2012
(PARI) q='q+O('q^50); A = (eta(q)^3 + 9*q*eta(q^9)^3)/(eta(q)* eta(q^3)^2); Vec(A) \\ G. C. Greubel, Jun 22 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved