

A325322


Palindromes in base 10 that are Brazilian.


1



7, 8, 22, 33, 44, 55, 66, 77, 88, 99, 111, 121, 141, 161, 171, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 323, 333, 343, 363, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 606, 616, 626, 636, 646, 656, 666, 676, 686, 696, 707, 717, 737
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Among the terms of this sequence, there are (not exhaustive):
 the even palindromes >= 8,
 the palindromes >= 55 that end with 5,
 the palindromes >= 22 with an even number of digits for they are divisible by 11, and also,
 the palindromes that are Brazilian primes such as 7, 757, 30103, ...


LINKS

Table of n, a(n) for n=1..64.


EXAMPLE

141 = (33)_46 is a palindrome that is Brazilian.


PROG

(PARI) isb(n) = for(b=2, n2, my(d=digits(n, b)); if(vecmin(d)==vecmax(d), return(1))); \\ A125134
isp(n) = my(d=digits(n)); d == Vecrev(d); \\ A002113
isok(n) = isb(n) && isp(n); \\ Michel Marcus, Apr 22 2019


CROSSREFS

Intersection of A002113 and A125134.
Complement of A325323 with respect to A002113.
Cf. A288068 (subsequence).
Sequence in context: A132899 A051175 A322651 * A288068 A058537 A002362
Adjacent sequences: A325319 A325320 A325321 * A325323 A325324 A325325


KEYWORD

nonn,base


AUTHOR

Bernard Schott, Apr 20 2019


STATUS

approved



