login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030197 McKay-Thompson series of class 3A for the Monster group with a(0) = 42. 6
1, 42, 783, 8672, 65367, 371520, 1741655, 7161696, 26567946, 90521472, 288078201, 864924480, 2469235686, 6748494912, 17746495281, 45086909440, 111066966315, 266057139456, 621284327856, 1417338712800, 3164665156308 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

COMMENTS

(1 + 42x + 783x^2 + 8672x^3 + ...) is the convolution square of (1 + 21x + 171x^2 + 745x^3 + ...), where A007261 = (1, 21, 171, 745, 2418,...).) -  Gary W. Adamson, Jul 21 2009

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

REFERENCES

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

N. D. Elkies, Elliptic and modular curves..., in AMS/IP Studies in Advanced Math., 7 (1998), 21-76, esp. p. 39.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters. Comm. Algebra 18 (1990), no. 1, 253-278

LINKS

Table of n, a(n) for n=-1..19.

Index entries for McKay-Thompson series for Monster simple group

T. Piezas III, 0013: Article 3 (Pi Formulas and the Monster Group)

Titus Piezas III, On Ramanujan's Other Pi Formulas

FORMULA

Expansion of Hauptmodul for X_0^{+}(3).

Expansion of (h + 27)^2 / h, where h = (eta(q) / eta(q^3))^12.

Expansion of 27 * (b(q)^3 + c(q)^3)^2 / (b(q) * c(q))^3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Jun 16 2012

Expansion of (a(q) / (eta(q) * eta(q^3)))^6 in powers of q where a() is a cubic AGM theta function. - Michael Somos, Dec 01 2013

G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = f(t) where q = exp(2 pi i t). - Michael Somos, Dec 01 2013

EXAMPLE

G.f. = 1/q + 42 + 783*q + 8672*q^2 + 65367*q^3 + 371520*q^4 + 1741655*q^5 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ 1/q ((QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / ( QPochhammer[ q] QPochhammer[ q^3]^2))^6, {q, 0, n}] (* Michael Somos, Dec 01 2013 *)

PROG

(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( (1 + 27 * x * A)^2 / A, n))} /* Michael Somos, Jun 16 2012 */

CROSSREFS

Apart from constant term, same as A007243, A045480.

Cf. A007261 [From Gary W. Adamson, Jul 21 2009]

Cf. A058092, A058537.

Sequence in context: A214945 A159947 A231158 * A225980 A231164 A020933

Adjacent sequences:  A030194 A030195 A030196 * A030198 A030199 A030200

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 05:45 EST 2014. Contains 252296 sequences.