login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030197 McKay-Thompson series of class 3A for the Monster group with a(0) = 42. 8
1, 42, 783, 8672, 65367, 371520, 1741655, 7161696, 26567946, 90521472, 288078201, 864924480, 2469235686, 6748494912, 17746495281, 45086909440, 111066966315, 266057139456, 621284327856, 1417338712800, 3164665156308 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

COMMENTS

(1 + 42x + 783x^2 + 8672x^3 + ...) is the convolution square of (1 + 21x + 171x^2 + 745x^3 + ...), where A007261 = (1, 21, 171, 745, 2418,...).) -  Gary W. Adamson, Jul 21 2009

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

REFERENCES

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

N. D. Elkies, Elliptic and modular curves..., in AMS/IP Studies in Advanced Math., 7 (1998), 21-76, esp. p. 39.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters. Comm. Algebra 18 (1990), no. 1, 253-278

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = -1..2000

T. Piezas III, 0013: Article 3 (Pi Formulas and the Monster Group)

Titus Piezas III, On Ramanujan's Other Pi Formulas

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of Hauptmodul for X_0^{+}(3).

Expansion of (h + 27)^2 / h, where h = (eta(q) / eta(q^3))^12.

Expansion of 27 * (b(q)^3 + c(q)^3)^2 / (b(q) * c(q))^3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Jun 16 2012

Expansion of (a(q) / (eta(q) * eta(q^3)))^6 in powers of q where a() is a cubic AGM theta function. - Michael Somos, Dec 01 2013

G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 01 2013

a(n) ~ exp(4*Pi*sqrt(n/3)) / (sqrt(2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 07 2015

EXAMPLE

G.f. = 1/q + 42 + 783*q + 8672*q^2 + 65367*q^3 + 371520*q^4 + 1741655*q^5 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ 1/q ((QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / ( QPochhammer[ q] QPochhammer[ q^3]^2))^6, {q, 0, n}] (* Michael Somos, Dec 01 2013 *)

PROG

(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( (1 + 27 * x * A)^2 / A, n))} /* Michael Somos, Jun 16 2012 */

CROSSREFS

Apart from constant term, same as A007243, A045480.

Cf. A007261 [From Gary W. Adamson, Jul 21 2009]

Cf. A058092, A058537, A121590.

Sequence in context: A159947 A252827 A231158 * A225980 A231164 A020933

Adjacent sequences:  A030194 A030195 A030196 * A030198 A030199 A030200

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 17:01 EST 2016. Contains 278745 sequences.