This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058536 McKay-Thompson series of class 18a for Monster. 1
 1, 0, 1, 4, 0, -4, 10, 0, 6, 20, 0, -4, 35, 0, 1, 60, 0, -4, 100, 0, 16, 164, 0, -28, 261, 0, 32, 400, 0, -28, 600, 0, 22, 884, 0, -32, 1291, 0, 68, 1864, 0, -116, 2656, 0, 140, 3740, 0, -120, 5205, 0, 100, 7184, 0, -144, 9842, 0, 262, 13388, 0, -392, 18082, 0, 449, 24244, 0, -420, 32300 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,4 LINKS G. C. Greubel, Table of n, a(n) for n = -1..2500 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994). FORMULA Expansion of A + q^2/A, where q*(eta(q^6)*eta(q^9)/(eta(q^3)*eta(q^18) ))^4, in powers of q. - G. C. Greubel, Jun 20 2018 EXAMPLE T18a = 1/q + q + 4*q^2 - 4*q^4 + 10*q^5 + 6*q^7 + 20*q^8 - 4*q^10 + 35*q^11 + ... MATHEMATICA eta[q_] := q^(1/24)*QPochhammer[q]; A := q*(eta[q^6]*eta[q^9]/(eta[q^3]* eta[q^18]))^4; a:= CoefficientList[Series[A + q^2/A, {q, 0, 80}], q]; Table[a[[n]], {n, 1, 80}] (* G. C. Greubel, Jun 20 2018 *) PROG (PARI) q='q+O('q^50); A = (eta(q^6)*eta(q^9)/(eta(q^3)*eta(q^18)))^4; Vec(A + q^2/A) \\ G. C. Greubel, Jun 20 2018 CROSSREFS Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. Sequence in context: A101980 A209134 A281297 * A154854 A151672 A058493 Adjacent sequences:  A058533 A058534 A058535 * A058537 A058538 A058539 KEYWORD sign AUTHOR N. J. A. Sloane, Nov 27 2000 EXTENSIONS Terms a(24) onward added by G. C. Greubel, Jun 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)