login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058486
McKay-Thompson series of class 12H for Monster.
3
1, 0, 14, 36, 85, 180, 360, 684, 1246, 2196, 3754, 6264, 10226, 16380, 25804, 40032, 61275, 92628, 138452, 204804, 300040, 435672, 627356, 896400, 1271525, 1791324, 2507426, 3488472, 4825531, 6638688, 9085888, 12373992, 16772908, 22633812
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Given g.f. A(x), then B(x) = A(x)+4 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = -u*v*(1 + u^2*v^2) + 7*u*v*(u + v)*(1 + u*v) + 9*u*v*(u^2 + v^2). - Michael Somos, May 16 2004
Expansion of (eta(q^3) * eta(q^4) / (eta(q) * eta(q^12)))^4 - 4 in powers of q. - Michael Somos, May 16 2004
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 11 2016
EXAMPLE
T12H = 1/q + 14*q + 36*q^2 + 85*q^3 + 180*q^4 + 360*q^5 + 684*q^6 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q^3]*(QP[q^4]/(QP[q]*QP[q^12])))^4 - 4*q + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 13 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^4 + A) / (eta(x + A) * eta(x^12 + A)))^4 - 4*x, n))}; /* Michael Somos, May 16 2004 */
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^6 + A)^6 / (eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)^5) - 5*x, n))}; /* Michael Somos, May 16 2004 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved