login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007267 Expansion of 16 * (1 + k^2)^4 /(k * k'^2)^2 in powers of q where k is the Jacobian elliptic modulus, k' the complementary modulus and q is the nome.
(Formerly M5369)
199
1, 104, 4372, 96256, 1240002, 10698752, 74428120, 431529984, 2206741887, 10117578752, 42616961892, 166564106240, 611800208702, 2125795885056, 7040425608760, 22327393665024, 68134255043715, 200740384538624 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 195.

R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 517.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = -1..10000 (terms -1..1000 from T. D. Noe)

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Vol. 2.

J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.

Titus Piezas III, Ramanujan's Constant exp(Pi sqrt(163)) And Its Cousins.

M. Somos, Emails to N. J. A. Sloane, 1993

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of 16 * (1 + k'^2)^4 /(k' * k^2)^2 in powers of q^2. - Michael Somos, Nov 11 2006

McKay-Thompson series of class 2A for the Monster group with a(0) = 104.

a(n) ~ exp(2*Pi*sqrt(2*n)) / (2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Apr 01 2017

EXAMPLE

1/q + 104 + 4372*q + 96256*q^2 + 1240002*q^3 + 10698752*q^4 + ...

MATHEMATICA

a[ n_] := If[ n < -1, 0, With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ 16 (1 + m)^4 /(m (1 - m)^2), {q, 0, n}]]] (* Michael Somos, Jun 29 2011 *)

a[ n_] := If[ n < -1, 0, With[ {m = ModularLambda[ Log[q]/(Pi I)]}, SeriesCoefficient[ 16 (1 + m)^4 /(m (1 - m)^2), {q, 0, n}]]] (* Michael Somos, Jun 30 2011 *)

QP = QPochhammer; A = (QP[q]/QP[q^2])^12; s = (A + 64*(q/A))^2 + O[q]^30; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 16 2015, adapted from PARI *)

PROG

(PARI) {a(n) = local(A); if( n<-1, 0, A = prod(k=1, n\2 + 1, 1 - x^(2*k - 1), 1 + x^2 * O(x^n))^12; polcoeff( (64 * x / A + A)^2, n+1))}

(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x + A) / eta(x^2 + A))^12; polcoeff( (A + 64 * x / A)^2, n))} /* Michael Somos, Nov 11 2006 */

CROSSREFS

Cf. A007241, A045478. Convolution square of A007247.

A045478, A007241, A106207, A007267, and A101558 are all essentially the same sequence.

Sequence in context: A217773 A187530 A185741 * A250668 A035811 A004393

Adjacent sequences:  A007264 A007265 A007266 * A007268 A007269 A007270

KEYWORD

nonn,nice,changed

AUTHOR

N. J. A. Sloane, Apr 28 1994

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 21:13 EST 2017. Contains 294954 sequences.