This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007264 McKay-Thompson series of class 7A for Monster. (Formerly M5302) 4
 1, 0, 51, 204, 681, 1956, 5135, 12360, 28119, 60572, 125682, 251040, 487426, 920568, 1699611, 3070508, 5445510, 9490116, 16283793, 27537708, 45959775, 75760640, 123471327, 199081632, 317814988 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,3 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Seiichi Manyama, Table of n, a(n) for n = -1..10000 J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339. N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues, in AMS/IP Studies in Advanced Math., 7 (1998), 21-76, esp. p. 39. D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278. FORMULA Expansion of (h+7)^2/h, where h = (eta(q)/eta(q^7))^4. a(n) ~ exp(4*Pi*sqrt(n/7)) / (sqrt(2) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 04 2015 EXAMPLE T7A = 1/q + 51*q + 204*q^2 + 681*q^3 + 1956*q^4 + 5135*q^5 + 12360*q^6 + ... MATHEMATICA QP = QPochhammer; h = q*(QP[q^7]/QP[q])^4; s = 1 - 10*q + q*((1+7*h)^2/h - 1/q) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015 *) PROG (PARI) q='q+O('q^50); F =(eta(q)/eta(q^7))^4/q;  Vec(F*(1 + 7/F)^2 - 10) \\ G. C. Greubel, May 10 2018 CROSSREFS Essentially same as A045489 and A030183. Sequence in context: A031431 A157365 A157916 * A158640 A107253 A030535 Adjacent sequences:  A007261 A007262 A007263 * A007265 A007266 A007267 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 02:35 EDT 2019. Contains 328244 sequences. (Running on oeis4.)