login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007265 McKay-Thompson series of class 8A for Monster.
(Formerly M5252)
4
1, 0, 36, 128, 386, 1024, 2488, 5632, 12031, 24576, 48308, 91904, 170110, 307200, 542872, 941056, 1602819, 2686976, 4439688, 7238272, 11657090, 18561024, 29242240, 45617664, 70507772 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.

Index entries for McKay-Thompson series for Monster simple group

FORMULA

a(n) ~ exp(sqrt(2*n)*Pi) / (2^(5/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017

EXAMPLE

T8A = 1/q + 36*q + 128*q^2 + 386*q^3 + 1024*q^4 + 2488*q^5 + 5632*q^6 + ...

MATHEMATICA

nmax = 50; CoefficientList[Series[-8*x + Product[((1 - x^(2*k))*(1 - x^(4*k))/((1 - x^k)*(1 - x^(8*k))))^8, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2017 *)

CROSSREFS

Cf. A045490.

Sequence in context: A238032 A250625 A057837 * A260130 A155708 A196891

Adjacent sequences:  A007262 A007263 A007264 * A007266 A007267 A007268

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 00:44 EST 2019. Contains 319206 sequences. (Running on oeis4.)