login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045478 McKay-Thompson series of class 2A for Monster. 197
1, 8, 4372, 96256, 1240002, 10698752, 74428120, 431529984, 2206741887, 10117578752, 42616961892, 166564106240, 611800208702, 2125795885056, 7040425608760, 22327393665024, 68134255043715, 200740384538624 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = -1..500

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.

Index entries for McKay-Thompson series for Monster simple group

FORMULA

a(n) ~ exp(2*Pi*sqrt(2*n)) / (2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Apr 01 2017

MATHEMATICA

nmax = 30; CoefficientList[Series[32*x + 4096*x^2*Product[(1 + x^k)^24, {k, 1, nmax}] + Product[1/(1 + x^k)^24, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 01 2017 *)

CROSSREFS

Cf. A007241, A007267.

A045478, A007241, A106207, A007267, A101558 are all essentially the same sequence.

Sequence in context: A159368 A167065 A100351 * A055319 A029736 A206460

Adjacent sequences:  A045475 A045476 A045477 * A045479 A045480 A045481

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 14 21:23 EST 2017. Contains 296020 sequences.