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Introduction

The connections between binary, ternary and quaternary error correcting codes on the
one hand, and lattices in R" on the other have been studied by many authors. In their
study, the knowledge of the theory of modular forms of lower levels plays an important
role. In return, by their results, we can understand the ring of modular forms on SLy(Z)
completely through the plynomial ring generated by weight enumerators of self-dual dou-
bly even binary linear codes. This map is called Broue- Enguehard map. This clarifies
the meaning of the expression of modular forms in terms of Jacobi theta functions.

The connection between the arithmetic-geometric means and hypergeometric functions
was a.h:eady known by Gauss. Only ten years ago, J.Borwein and P.Borwein found a cubic
analogue of the arithmetic-geometric mean. In their study, the fact that certain modular
forms on ['¢(2), [9(3) and I'g(4) are expressed in terms of hypergeometric functions, plays
an important role. This fact was already known by Ramanujan.

The common feature of these two connections are modular forms on non-compact arith-
metic triangle groups. Modular forms on some of these groups have appeared in other
areas like as Hecke groups and Mirror maps.

Takeuchi showed that there are nine such groups. In this paper, we study holomorphic
modular forms on all these groups. We shall show that we can deal with modular forms
on these groups in a unified manner using hypergeometric functions. We shall give a basis
of the space of holomorphic modular forms of every even weights explicitly in terms of
hypergeometric functions and modular functions. As a result, we obtain generalizations
of Broue-Enguehard map. Our results have many applications. We can study differential
equations which have modular forms on these groups as their solutions. We will discuss
this result in a subsequent paper.

The outline of this paper is as follows. In Section 1, we summarize the results from

codes, weight enumerators and lattices that will be needed in the sequel. In Section



sumimarize properties of hypergeometric functions associated to non-compact arithmetic
triangle groups.
In the remaining sections, we devote to construct a basis of the space of holomorphic

modular forms of every even weights on these groups.

1 Code, Weight enumerator and Modular forms

We recall several facts from Coding theory. g

A code C of length n over the field Fy,¢q = p* (p prime), consists of a set of n-tuples
u = (ug, Uy, ,Uy,),u; € Fy. Cis called linear if C form a vector space over Foo The
Hamming weight of a vector u = (uj,us,- -, u,), written wt(u), is the number of non

zero u;. The Hamming weight enumerator of C is

Vol e e
ueC
For u,v € F}, we define their scalar product by u-v = Y w;v;. The dual C of a linear
code C consists of all vectors v € Fysuch that u-v =0 for all u € C. A linear code C is
called doubly even if the weight of all codewords in C are divisible by 4.
A code over F,, F3, F, is called binary, ternary, quaternary respectively.
Sloane [16], Conway-Sloane [5]

We consider binary codes.

THEOREM 1.1 (Gleason) Let C be a binary linear code which is self-dual and doubly even.
Then

VVC(:L" y) € C[fl(‘/l'ﬁ y)a./.‘l(xvy)]v
where fi(z,y) = 2% + 1daiy* + 48, fo(z,y) = 2%y*(2* — y*)*.

From binary linear codes, we can construct lattices. We take the standard lattice

Z" ¢ R"™ and consider the reduction mod 2:
p:2Z" - F,.

Let C be a linear code in F%. Then p~!(C), the preimage of C in Z", is a lattice in R™.

We define A¢e = —%/)"(C). The theta function of the lattice Ac is defined by

@AC(T): Z cnir(;v.;v).

rEAC



We express the theta functions of lattices in terms of the following Jacobi theta func-

tions:

&bl = iees ¥ &,
(1) = - 1/2X712+n+1/4)
B3 X 4 &,

Then the following proposition is easily proved and is well known.

PROPOSITION 1.2 Let C be a binary linear code with Hamming weight enumerator We(z, y).

Then
Oac(7) = We(05(27), 02(27)).

We define the map @, : Clz,y] — C|[g]] by %
2

05(f(2,y)) = f(05(7),02(7)).

THEOREM 1.3 (Broué¢-Enguehard) @, gives the isomorphism from C[fi(z,y), f2(z,y)] to
C[E4, A], and 5(fi(2,y)) = Ea(7), P2(fo(2,y)) = 16A(7).

We consider ternary codes.

THEOREM 1.4 (Gleason) Let C be a ternary linear code which is self-dual. Then
We(z,y) € Clai(,y), 92(=,y)); .
{

1

where gi(2,y) = 2* + 821°, ga(2,y) = *(2° — ¢*)*.

From ternary linear codes, we can construct complex lattices.Let O be the ring of

integers in the imaginary quadratic field Q(v/—3). Let (7) denote the prime ideal of
norm 3. Then (O/mO)F;. We take the standard lattice O™ in C™ and consider reduction

mod (7):
p:0" = Fj.
Let C be a ternary linear code. We define Ac = p~'(C), which is a lattice in O™. The
theta function of the lattice A¢ is defined by
@Ac(T) = Z 621ri7'(x,:r)/3.
z€EA

We can express the theta function in terms of Jacobi theta functions too.



PROPOSITION 1.5 Let C be a ternary linear code with Hamming weight enumerator
We(X,Y). Then
O(7) = We(tho(7), #1(7))-

bo(r) = 0(27)0,(67) + 05(27)03(67) A ol é
n() = 5 {s(5) b0}
We define the map ®s : C[z,y] — C[[q]] by
D5(f(2,1)) = [(o(r), (7).

where

THEOREM 1.6 (Broué-Enguchard) 3 gives the isomorphism from Clgi(2,y), 92(z,y)] to

C[Es, A, and ®3(g1(z,y)) = Ea(7), ®3(g2(z,y)) = 27A(7).

We consider quaternary codes.

THEOREM 1.7 (MacWilliams-Mallows-Sloane) Let C be a quaternary linear code which
is self-dual. Then :
We(z,y) € Clhi(z,y), ha(z,y)],

where hy(z,y) = 22 + 332, ho(a,y) = ¥*(2? — ¥*)%.
From quaternary linear codes, we can construct complex lattices too. Let (2) denote
the prime ideal of norm 4. Then (O/20)F,. We take the standard lattice O™ in C" and

consider reduction mod (2):
s : Q" 2 FL.

Let C be a quaternary linear code. We define A¢c = p1'(C), which is a lattice in O™.

The theta function of the lattice A¢ is defined by

@Ac (T) e Z lei-r(a:,::).

z€Ac
We can express the theta function in terms of Jacobi theta functions too(For the

proof,see [17]).

PROPOSITION 1.8 Let C be a quaternary linear code with Hamming weight enumerator

We(X,Y). Then
Oarc(T) = We(go(T), ¢1(7)).

where

) = (),
02(2T)0;;(6T) + ()3(27')02(6T).
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We define the map @4 : C[X, Y] — C[[¢]] by \@\F

4(f(X,Y)) = f(o(7), $1(7))-

It is natural to consider ®4(22 + 3y?), @4(y*(2? — y?)?). Contrary to the cases of binary
and ternary codes, they are not modular forms on SL(2,Z). We shall express these

modular forms in terms of modular forms on certain non-compact, arithmetic triangle

groups.

2 Hypergeometric functions asoociated with non-compact
arithmetic triangle groups

Let a, 3,7 be complex numbers which are not zero. Hypergeometric function F(a, f;7; z)

is defined by
F(a,f;v;2) = X_% —((T)):((f))nl"

where (a)o =1,(a), =ala+1)---(a+n—1)(n>1).
The Eisenstein series F24(7), Eg(7) are expressed by the hypergeometric function as fol-

lows (For the proof, see Stiller [18]):

5 93
(1) E4(T) = F(l_gal%ala.;lz‘r_))‘ia EH’
e S

Hence we get

Ey(r)® — Eo(7)?
Ar) = 2L =BT
i I« h |

& i

)12.
Put F = F(&, 3,1, .123) and d = dim¢ M. Then, if k=0 (mod 4),

()
1 1
Fk,, Fk,"',',——Fk}
{ 3(7) Hr

is a basis of My, and if £ =2 (mod 4),
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1s a basis of M. A modular form on SL(2,Z) is written as a linear sum of these ex-
plicit modular forms expressed in terms of the hypergeometric function and the modular
function.

Takeuchi [19] showed that there exist nine non-compact arithmetic triangle groups.
The famous one among them is the modular group SL(2,Z). We shall show that modular
forms on these nine groups are also written by linear sums of explicit modular forms which
are expressed in terms of hypergeometric functions and modular functions.

The following table gives the nine non-compact arithmetic triangle groups:



1A 2,3,00 (é) 1%,1) I.‘0(]‘)

2A1 24860 (1,3,1) | *(2)

&8 20080 | (5

3A | 2,6,00 (3,3,1) | *(3)

3B | 3,00,00 | (3,%,1) [o(3)

4(3 00,00,00 (%’%71) F0(4)

2a] 3300 | (§:5:1)

4a | 44,00 (i,%,l)

6a | 6,6,00 (%,%,1)

Conway-Norton [4] showed that a lots of modular function of genus zero are parametrized
by conjugacy classes of the Monster group. Afterthat Ford-Mckay-Norton|[8] extended the
list of modular functions of genus zero. First column gives their name.

The second column gives ramification indices. The third column gives the corresponding
hypergeometric functions F(a, B;7; 2).

The fourth column gives the usual notation of arithmetic congruence subgroups. The
blank means that they are not congruence subgroups.

The modular function field with respect to these groups are genus zero and we can see
the normalized generator T,(7),which is called Thompson series, in Conway-Norton [4]
and Ford-Mckay-Norton[8]. But the constant term of Thompson series are determined
to be zero. For our purpose, we need to choose exact constant, which are given in the

following table with other Fourier coefficients . We denote these modular functions by

flrl



Table 2

tia loa LB lac 34 lap
-1 1 1 1 1 1 1
0 744 104 40 8 42 15
1 196884 4372 276 20 783 54
2 21493760 96256 -2048 0 8672 -76
3 864299970 1240002 11202 -62 65367 -243
4 20245856256 10698752 -49152 0 371520 1188
5 333202640600 74428120 184024 216 1741655 | -1384
6 4252023300096 431529984 -614400 0 7161696 | -2916
7 44656994071935 2206741887 1881471 | -641 26567946 | 11934
S 401490886656000 | 10117578752 | -5373952 0 90521472 | -11580
9 3176440229784420 | 42616961892 | 14478180 | 1636 | 288078201 -21870
10 | 22567393309593600 | 166564106240 | -37122048 0| 864924480 | 79704 .
11 | 146211911499519294 | 611800208702 | 91231550 | -3778 | 2469235686 -71022

A o2\

A2t

P 3’5077

Each row with n gives Fourier coefficient of ¢".

\
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| Mﬁ G 8 4 oéﬁ%tr-ab
Pt A Vsadal Fid

t4a tea

_% 1 1 1
0 24/=3| 16y/-1| 6/-3
! 492 76 33
3 22590 03 E 153
: -367400 sa] s
2 23764865 |  -23425 | -2550
o] -28951452 | -98172 | -7479
U _182474434 | -336450 | -20314
L1 990473160 | -1094152 | -51951
1514780921725 | -3188349 | -122229
17 [20974230680 | -8913752 | -276656
1971 -34963769662 | -23247294 | -601068

Each row with % gives Fourier coefficient of ¢2.

These modular functions have already appeared in many literatures. We quote a few
of them, J.Borwein and P. Borwein [2] , and B. Lian and S-T. Yau (13]. Triangular
replicable functions considered in M. Hanrad and J. Mckay [9] are the same as above.
They satisly algebraic relations. In the following table, we write them in a unified form:

The relation is



Table 3 :

64z(1 — z)3

{ 2
1 | W28 | Sy

27z(1 — 2)?

t 172
= : (1+32)3

4
(1+2)?

tzA 25() —4113(.’1, e 1) th 64

t3A 108 —41(1 = 1) t33 27

Ge TV i b e

t34 | 108 —_— la | 124/-3

>
L, 256 v sl & N & -V 055
24 W=D 4

If we can find the forms of these algebraic relations , 1t is easy to prove them. So we
omit the proof. Some of them are already appeared in the above quoted literature.
We notice that these algebraic relations between ty(7) are closely related to the quadratic,

cubic and quintic transformations of the hypergeometric functions. We use the following

10



quadratic transformations of the hypergeometric functions which are well-known in the

book of Erdélyi [7]:

1 1 1 N
b 2bs) = (L-2y Chloab—abd =
3) FbiZhs) = (LA LECaNS SRt ),
b 1 b+1
@ Pt 5 = PGegh Tt 0 -0
PROPOSITION 2.1
3 / /
(5) ]’(i 3.1. 12 ¥ 0. 4_8__3)1/12p(1’l. ;48 _3)
12 12' " 3(r) ik 6.2 R
1 3-:.208 v S0 BTG B g o 0¥
‘ F(z,ih—) = (1- =2 M8p( .1
(6) (87 o tZA) ( tqa ) (472’ ;) t4a )7
kol 108 12/-3 5 | 124/-3
7 Plz,sili—) & (1~ P o1, :
(7 (Grylig) = B-=F G o)
PROOF.  This follows from (3) and Table 3.
PROPOSITION 2.2
153 64 13 256
Pl oibec) = Pl- =150y
(474’ )t2B) (878 tzA)
13 b ¥ i 3 108
F(z,5:1;,—) = F(3,2;1; —).
(3’3’ tsB) (6 3 taA)

PRrOOF.  This follows from (4) and Table 3.
It is known that some of our ¢, are expressed in terms of the Jacobi theta functions.

We refer [2] [6] [15].

6(93(2T)4 +0;(27))?

(8) el g
v i

(9) tac = 102(27_)4,

(10) tig = 27:2?2:;3

Hence we can restate Theorems 2.2,2.3 and 2.6 in [2] in terms of Thompson series.
THEOREM 2.3
(11) i )' = 05(27)" + 0,(27)",

(12) F( ¥ = 8(2r),

(13) e )= o(r)”.

11



2.1 Poincaré series of the ring of modular forms

Let I' be one of nine non-compact,arithmetic triangle groups. Let k& be an even, non-
negative integer. Let M (T') denote the space of holomorphic modular forms on I'. If T’
corresponds to an element ¢ in the Monster, My(I') is also denoted by M(g).

The Poincaré series of the ring of modular forms on I' is defined by the following

generating function:

Pr(u)=1+ Z dy.(I)u*,

k>0,even

When I' is a triangle group, the associated Poincaré series is easily calculated.

3 Pr(u)
ik 23 . To(1)
el oy gee 8l B
1 4+ uf
2A | 2,4 (2
e (1 —u)(1 —ud) 2)
2B | 2 : [o(2)
gias TETUTESE
el e 1+ u? .
3B | Lo(3
. e (1 —u?)(1 —ub) o(3)
4C 0o : To(4)
0,00
S i =wtil -t} ] T
. s 1 +u®
2| 3300 | T
I 423884 u"
4 4.4
i B RV T R

12



T : Pr(u)

3A 26 1+u4+u6+2u8+2‘u10+ul2+2ul4+u16+u18 F*(3)
e (1 S50 ulZ)(l = ul2)

6a | 6.6 14+ u® 4 2u® + 3u® 4+ 4u'® + 3u!? + 4u' + 3u! + 2018 4 2°
# (1 —u'?)(1 —ul?)

3 Modular Forms on 2a

We denote by My (2a) the space of holomorphic modular forms on 2a. Since the group -

¥4
1A is generated by the group 2a and ( s ), we can decompose M (2a):

Mi(2a) = M (2a) & M (2a).
where
M (20) = {f(7) € Mi(29)|f(7 + 1) = f(7)},
: M, (2a) = {(7) € Mi(2a)|f(7 + 1) = —f(7)}.
Then it is obvious that M;f(2a) = M (1A).

We shall prove that

PROPOSITION 3.1 Let ®, be the map defined in §1. Then

Ve Loy @yt - ),

—F
5 (6 2’ L Y

and this modular form belongs to Mg (2a).

PROOF. :
Put Ty = t3, — 24+/—3. Then j(7) — 1728 = T},
IFrom Theorem 1.3, it follows that
_— 16(02(27') + 140,(27)403(27)* + 03(27)8)°
3 0,(27)405(27)4(02(27)" — 03(27)4)4

;|

and

(02(27)"2 — 330,(27)%04(27)* - 330,(27)%05(27)® + 03(27)"?)?
0 o

j(r) = 1728 = 16 02(27)05(27) 4 (0a(27)" — 05(27) )"

13



Hence

4(05(27)'2 — 330,(27)%03(27)* — 3302(27)*03(27)° + 05(27)'?)

e 0227 ) 05(27 )2 (0,(27)" — 03(27)")? |
L _ U2 +2V/=30,(27)"05(27)° +03(27)*)°
& 02(27)205(27)%(02(27)* — 05(27)*)* '
Thus
| _88V=3 _ (0:(27)" — 2V/-305(27)%05(27)° + 65(27)")°
e (02(27)1 4+ 2¢/=305(27)%05(27)2 + 05(27)")*’
and
o 46\/— 1/3 (0. )4 — 24/=305(2 )2, 7)% 4 05(27)*)
t2a (65(27)* + 2¢/—305(27)205(27)? + 03(27)*)
Put

5 48\/—3)
63 b
From (5) in Proposition 2.1 and Theorem 1.3, it follows that

Fy, = F(=,

F;u = E4(T)

= 05(27)° + 1405(27)"05(27)" + 05(27)°

Since 28 + 14aty* + y® = (a* + 2/=32%y? + y*)(2* — 2v/=32%y* + y*), we have

o= (05(27)* + 2/ —30( 27)%05(27)% + 03(27)*)>.

Hence
: § 3
F, = {0a(27)" +2v/=30,(27)05(27)° + 03(27)*}
1 : ; , . :
=i = % {02(27)105(27)* — 205(27)°03(27)° + 02(27)205(27)"°} .
2a

r] h(_,l( f()l( [ - (lll(l I { q alre )l()\’(‘(l Lo l)( ll()l()l]l()l )Ill( lll th( upper Il(llf )ldll( dlld al
2a 2al “2 l Pl |
dll cusps.

From (5) in Proposition 2.1 and Theorem 1.3, it follows that



(1 _ 24V=3

t2a

) cma - EG(T).

Hence F7, are proved to be a modular form of weight 6 on 2a. Since the dimension of
Mg (2a) is one and Fy, /15, has the Fourier expansion N 1% ), %, [t2, belongs
to My (2a).

This completes the proof of Proposition 3.1.
THEOREM 3.2 @, gives the following isomorphism :
DrroMy(2a) = 2%y (24 — y*)’CLX, Y],
where X = X = 2% + 142ty + 35, Y = 22 — 33284 — 33z24y® + y'2.

PROOF. It is known that , gives the isomorphism from C[X,Y] to GrsoMyi(1A4) =
@r>0Myi(2a). It is obvious that if f € M3 (2a) g € M;;.(2a), then fg € M3 91(2a).
Since the Poincaré series Py, (u) = (1 4 u®)/(1 — u*)(1 — uf), .

4  Modular Forms on 2B and 2A

The ring of modular forms on 2B was already studied by Maher [14]. We recall his result.
He did not use the expression by hypergeometric series. This expression was appeared in

the paper by J.Borwein and P.Borwein [2]. So we mix their results.

os i1 0
Pan e Flw. =1 w=)
2B (414) )tzB).

e 13 256
Fop = F(5,=;1; —).

24 (8 3 tu)

By computing a few Fourier coefficients, we have
03(27’)4 + 02(27')4 — 2E2(2T) S E2(T),

where (1) = 1-24 7% | 6,(n)q¢". It is well known that 2[5(27)— E5(7) is a holomorphic
modular form on 2B. Hence, from Theorem 2.4, it follows that F; belongs to M,(2B).
From (8) and (11) in Theorem 2.3, it follows that

1 1
— Fyp = —03(27)%0,(27)".
i = 150a(2r)'0(2)

Therefore ,2—'3-1".2"3 belongs to My(2B). Since the dimension of M4(2B) is two, My4(2B) is

generated by [, and QLBI*’.Z"H.



THEOREM 4.1 (Maher) ®; gives the following isomorphism :

Br>o My (2B) = Clz* + y*, z'y].
PROOF. Since the Poincaré series Pop(u) = 1/(1 — u*)(1 — u®), this is obvious.

From (8) and the algebraic relationship between 54 and 1;p, it holds

> (03(27)* + 0(27)")*
{43 taa = G 3T Yi0,(27) (0a(27)" — 02(27)0)

Hence we have

e ?5_6)1/2 (2] - 60s(27)102(27)* + 02(27)°
taa (03(27)* + 0,(27)%)*
Hence (1 —%)1/21’26,4 = &, ((28—6z'y*+y®)(2*+y*)) belongs to Mg(2B). By computing
Fourier expansion of this modular form, we see -

(1 = 20pepg, = & (Bo(r) + 821}

24
This shows that (1 — f—g)l/?FfA belongs to Mg(2A).

THEOREM 4.2 &, gives the following isomorphisms :

Br>oMar(2A) = Cl(z* + y")?, 2'y (2" — v*)*].
BrsoMuri2(24) = (2 — 62%y* +4%)(a* + y")Cl" + 4% 2"y (2" - v")’):

5 Modular Forms on 4a

Put
5 - 32\/
—F( )21 1 t )
4a

We denote by M;(4a) the space of holomorphic modular forms on 4a. Since the group

R |
2A is generated by the group 4a and ( &4 ), we can decompose My(4a):

M(4a) = Mt (4a) & M (4a).

where
M} (4a) = {f(r) € M(4a)|f(T +1) = f(7)},
M (4a) = {f(7) € Mi(da)|[(T + 1) = =[(7)}.

Then it is obvious that

M (4a) = My (2A).
k

16



PROPOSITION 5.1 Let @, be the map defined in §1. Then

1 161 : E 1
(1-1822) pe = o ~ o),

%; t4a

and this modular form belongs to Mg (4a).

PROOF.
Put Ty, = t4e — 164/—1. Then t24 — 256 = Tfa.
By (14) in §4, we have

= 4(0,(27) — 60,(27)*05(27)* + 03(27)%)
ot Taa = =4, (27)205(27) (0a(27)" — 05(27)")

SO

: )

(16) . 4(605(27)% + /—16,(27)%)*
3 02(27)%03(27)*(02(27)* — 03(27)4)

Thus

| 32VT _ 4(65(27)° = V= T65(27)°)"
i  4(05(27) + V=10,(27)2)"

SO

a7) - (o HE i T
T (05(27)% + V—10,(27)2)%

t4u

By (6) in Proposition 2.1, we have

—7\?
(1-25) m - Ry

t4a

= <I)2(:L'8 + 2z%y* + 28).

Substituting (17) in this identity, we have

(18) Fi = &,((2* + V-13%)").
From (16),(17),and (18), it follows
I wa
(19) Ll RS, = 10,22 (" - )
14"‘ t4u 2
We see
ssgnd T, 32 /=T\ 4
(20) <1—i6)2F2(’A=‘L 1’"3 F46u'
) laa lL4a l4a

17



Hence the right hand side of (20) is a modular form of weight 6 on 4a, and (19) shows -

that this is a holomorphic modular form on 4a.

PROPOSITION 5.2 Let 9y be the map defined in §1. Then

] 1. 3 : £
(21) e (1 Z ) Fo = 4“1’2(1’23;2(@'4 — y")((2® - 62'y* + 7).

t4a t4a

This modular form belongs to Mg (4a).

PROOF.  Since (1 — %fz)i F{ belongs to M4(4a), the left hand side of (21) is a
modular form of weight 8 on 4a. Since the left hand side of (21) is equal to é—f—’;iFfa, the

identity (21) follows from (15),(16), and (18). Since the dimension of Mg (4a) is 1 and
the left hand side of (21) has the Fourier expansion ¢'/*(1 — 84¢ — 82¢* + - - -),we obtain

the proof.

PROPOSITION 5.3 Let ®; be the map defined in §1. Then
e 1 :
(22) Fa = —B(z'y' (e’ — o))
. 16
This modular form belongs to Mg (4a).

PROOF.
We see that #FEA = t?l:Ffa. So we obtain the proof.

Combining Proposition 5.2 with 5.3, we obtain

THEOREM 5.4 &, gives the following isomorphisms:

Bz My (1a) = {2 (z* — y*)(2® — 62%y* + %)} C(2* + ")’ 2"y" (=" — )]

@kzoA’Ifkn(‘la) o~ {$2y2($4 G y4)(a:4 +y4)} C[(a;4 + y‘)z,x"y"(x" = y4)2]’

6 Modular forms on 4C

The ring of holomorphic modular forms on 2B was already studied by Maher [14]. But
he did not use the expression in terms of hypergeometric functions. This expression was
appeared in the paper by J.Borwein and P.Borwein [2]. So we mix their results.

Put
d=l. 16

s P
272) ,t4C)

From (12) in Theorem 2.3 and (9), it follows that

Fyo = F(

g g 1
Fie: = 03(27)*, — Fie = —0,(27)".
Lac 16
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THEOREM 6.1 (Maher) ®, gives the following isomorphism :

Br>o M2 (4C) = Clz?,y"].

PROOF. Since the Poincaré series Pyc(u) = 1/(1 — u?)(1 — u?), this is obvious.

7  Modular forms on 3B and 3A

The ring of holomorphic modular forms on 3B was already studied by Maher [14]. The
situation is the same as in the case of 4C. But the structure of the ring of holomorphic
modular forms on 3A was not studied.

Let @5 : C[z,y] = C[(q]] be the map defined in §1 by
O3(f(z,y)) = f(o(7), (7).

At
1.2 27)
3’3’ ’t33 5

From Theorem 2.3, we have FZ; = ®3(2?). Combining this with (10), we have

Fap = F(3,

F — ——q) 5

o1 = g7 3(2y°)
and . y

6 = —d3(y°).

tsB e 729 s(y )

THEOREM 7.1 3 gives the following isomorphism :
Dr>oMau(3B) = Clz?,y°] @ 2y°C[a?, y°].

PROOF.  Since the Poincaré series Pgé(‘lt) = (14 u*)/(1 —u?)(1 —u®), this is obvious.
From Table 3, it follows that

¥y
9 e . S
ot b = 21 s — %)
ik 08 27 - P =2
1 1 h h
24 g f=1-9—=2-——2
Sa ( l34 ) tsp 1/)
s P e
B ] s et )
3A (()a 3a ) tiA )

IFrom Proposition 2.2, it follows [34 = [3p.
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By computing a few Fourier coefficients, we see
1
F;A == E {E4(T) -+ 9E4(3T)} N
which shows that Fj, € M4(3A).
From (22), it follows that

108

3A

)2 F5, = $a(5 — 247)-

(25) (

This belongs to Ms(3B). By computing a few Fourier coefficients, we see that this is
equal to 55 { Es(7) + 27E6(37)}, which shows that this modular form belongs to Mg(3A).
Since 1, € My(3A), F5; € Mg(3A). To show that 731: 8, € Mg(3A), it is enough
to show that it is holomorphic on the upper half plane and cusps. this follows from the

following identity:

E
— P, = W — 1),

t3a
By using the same argument, we can prove the following identities:

108 e :
(1 o ) F3A = “/’o("/)g s 21/)f))

1 108 373773 SN 3
is—A( 5 ) F3A = Yoty (Yo — 297 ) (%o — Pr)-
E b i aisco 3
EFM == —"/)0'4/’1("/’0 = “/)1)a

Eoins
i - s — i)
108 .1
| T —t;) Fi4 = ¢ (¥5 —24)),

1 108 .1 S : : ;
LA = - 2 - )
_1_1an = Ll/)_m“/):s(,‘/); i ,"/)3)

- 3A o7 V0 V1o 1)
S | o
g = agdelen - )

20



(1- ) R = (v — 243),
l34
1 08— ’ ; . :
a(l = a)zFalﬁ = Yot (vs — 297) (s — ¥1),
108 ., .
izA(l = gA—) TFS = YRyt(vd — 293 (%5 — ¥3)2.
3

Let S denote the subring generated by X = z? and Y = y3(2® — ¢?) of C[z,y]. We
define the degree of the monomial X°Y? is 2a + 6b. Let Sy and S; denote the submodules

of S generated by all monomials of X and Y of degree 4k and 4k + 2 for all integers
k > 0,respectively. Put

Sy = {(a,b)|2a + 6b = k,a,b > 0,and a,b€ Z}.

Let d;. denote the number of elements in the set Se. Then it is proved that dgy_, =

dim My 42(3A).

Combining this with the above identities and the Poincaré series of 34 in §2.1, we

obtain the following theorem.

THEOREM 7.2 @3 gives the following isomorphisms:
9 9 1

Br>oMar(3A) = So
Br>oMars2(3A) = { (2 — 2¢° }bl

REMARK. If we compare the above theorem with Theorem 1.6, we notice the simi-

larity.

8 Modular forms on 6Ga

The connection between the ring of modular forms on 3B and 3A and a subring of the
polynomial ring of two variables x and y are expressed in terms of @3 which is introduced
in studying theta functions associated to ternary code. However, to study the connection
between the ring of modular forms on Ga and a subring of the polynomial ring of two
variables x and y, we need a new map W4 which is related to the map @4 introduced in
studying theta functions associated to quaternary codes.

We define the map ¥4 : Clz,y] — C|[¢]] by

= Wy(f(2,y)) = f(¢o(27),b1(27)).
So Vg4 is different from the map ¢4 defined in §1.
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PROPOSITION 8.1 The following identities of theta functions hold:

(26) ¢v0(27)2 + 3¢1(2T)2 = 4)0(7)2 — 1/)0(7)2,
1 2 32 i i 3 N 3
(27) 14127)($0(27)" — u(27)°)° = 57 1(7)" (%o(7)” = 1 (7))
PROOF.

The identity (24) was given in the page 176 in Sloane [18]. In [18], the left side of (25)

is shown to be equal to 5(7)%)(37)°, which is known to be an element in My(3B). Using

Theorem 7.1, we can prove (25).

Let S be the ring defined in the precedin section, which is generated by 2% and v (z® —

y*). Then ®3(S5) is a subring inC[[q]].

COROLLARY 8.2 W, gives the following isomorphism:
Cla? + 3y%, y*(2? — ¥*)?) = 04(T)

Let T denote the subring generated by U = 2243y* and V = y*(22—y?)? of C[z,y]. We
define the degree of the monomial U*V?® is 2a + 6b. Let Ty and 7y denote the submodules
of T' generated by all monomials of U and V of degree 4k and 4k + 2 for all integers
k > 0O,respectively.

We denote by M(6a) the space of holomorphic modular forms on 6a. By the same

reason as in the case of 2a and 4a, we can decompose M, (6a):

M (6a) = {f(7) € Mi(6a)|f(7 +1) = f(7)},
M (6a) = {f(7) € My(6a)|f(r +1) = —f(7)}.

Then
Mi(6a) = M}t (6a) & M (6a),

and we have

M} (6a) = Mi(3A).
We express holomorphic modular forms on 6a in terms of Iy, and ig,.
Put Tg, = o — 64/—3.Then t34 — 108 = T2 and t34 = tg,(te, — 12y/-3).
I'rom (23) and Proposition 8.1, we have

1o, = A(o(27)” + 3¢, (27)%)°
" GG — (2P




Hence

[ 240(27)(d0(27)? = 91 (27))\*
= ‘“’8'{ 51 27) (9ol — h1(27)?) } ’

E o _ 26(27)(d(27) = 9u(2r)?)
7 i(27)(do(27)2 — di(27)?)
Thus
_2o(27) + V=3¢ (27))°
! toe = (27 (B027) — 41 (21)2)’
and
(29) & 12v=3 _ (do(27) — V=3¢1(27))°
toa (¢o(27) + V=3¢1(27))*’
. 6v/—3 i $o(27)(o(27)* — 9¢1(27)?)
t6a (¢o(27) + V=31 (27)>
Hence
03 (1 5 12\/—_3) " _ $0(27) = V3 (27)
l6a T o(27) + V=3¢ (27)
A : _F11_.12\/—'3
- (5’5’ ey )

From (7) in Proposition 2.1, it follows that [34 = (1 — 1_2_;“@)5 Fso. F3}, belongs to
My(3A) and Fi, = ¢o(7)* = Vy((2? + 3y?)?). From these and Proposition 8.1 it follows
that

<1 . lztﬁg ) Fa, = (0(27) + 31 (27)")".

Ga
Combining this with (30), we have

(31) Foo = Wa(z + V=3Y).

Similarly, we have

(1 % @)5 8, = (1 2 12V_3> (1 - (’V—‘;) e

i34 6a t6a

From (28),(29) and (31), we have

o (1= 28 e = Gttt + 397 )

t()’n tGu
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Here we use the strange fact that ¢0(T) = {$o(27)? + 3¢1(27)*} /2 which follows from
Proposition 8.1. Therefore t—cl_., (1 —ch) F¢, belongs to Mg(6a). Since the dimension

of M{ (6a) is 1, this modular form is proved to be an element of M (6a) by computing a

few Fourier coefficients. Similarly we obtain

(1 = 6\/——3) <1 = 12‘/‘_3> " S, = do(r)Wa(z(a? + 35)(a” — 95)).

lGa tGa

This modular form belongs to Mg (6a).
By the same argument as above, we can express holomorphic modular forms on 6a in

terms of g, and Fg,. We give only identities without proof:

(1 : 12““_3) CES = W+ 30

tGa

tGa.

1 1273\ * 1 | (
& (1 3 ) Fg, = 3‘1’4(112(1‘2 — y))%(a* + 3y%)).

2
tGa

1 (1 ; Gm) (1 - —12“73)3 B, = L0(y(e? — y)a(a? - 99")(a" + 39°))

Lsa l6a Loa

S~

(1—6“:3_) (1—12“‘—3) 10 = o) Wa(ala? - 997)(a? +367)°)

l Ga Ga

tGa

- (1- W) (1- W—‘—?’-) RS = LU 0? — el = 99°))

t%a tGa

_1_(1 12¢/- )Fgf:

tGa tGa

1 (1 12\/_> Fcl:? = ld)o(‘r)‘l’«:(y:;(ﬂiz B y-z):s)‘

E . tGa

tGa,

(1 12‘/_) F2 = W((a? + 34%)°).

L

g (1 12\/—> L \I!4(y2(1172 — v} (e + 352)°).

tGu

Ga

ol o
-t—l'&f = e Valy'le* - ).
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y?)(a? + 3¢%)°).

tGu

(1 = 6\/—'3) (1 e 12‘/‘—3) F2 = %\h(y(w2 — ¥ )a(x® ~

ik 6v/—3 1 :
2 (1 o ) F3? = SVa(y*(@ — y*Pa(z” - 99°)).

tﬁa

t()u,

(1 . 6\1/6——3> ( 12\/_> ) FM = ¢o(7)¥4(z(2® — 9y?)(2? + 3y%)°).

2 — vz (a? - 9%) (2 + 3y%)?).

RSN Te R TR BT RN
t(23a tGa tGa 4
1
t tl)a

< 12\/_> > Pt = %d)o(T)\I/“(y(lﬁl _ )2 + 391)°).
< 12\/_) F(;l"——(ﬁo() ((l_l/)(i—}-jg))

2
tGu

1 (1_12“‘_3)31?;;3:43@ (& = )2 + 357

6‘/__3> (1—m)§ﬂ‘3 ~Uy(y(2® — y*)a(a’

1
1 (1 v
tGa

tGa

tGa tGa

1 (1—6\/”_3) (1—5“—‘_3)5@;3:1 a(y (2 — v2)2(a? — 92) (e + 3y)P).

13
tGa.

tGa

1 <1 15 ()\/—_3) (1 N 12\/—_3)5 Fblf = %(bO(T)\I’:a(y?(wz S yz)zx(wz e gy )(.L +3y ) )

l éu tGu.

):S(w'l = 3y2)4)'

Ga b

1 (1 . ‘2\/3)2 FS = Lgo(r)Wa(y(a?

3
tGa tﬁu‘

) R = HE - el - 99 4 37

l | 6v-3 g 12/-3
. t(zu tGu tGu
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The denominator of the Poincaré series of 6a is (1 — u'?)?. The two generators are

modular forms of weight 12 given by

2
(1 ol _3) R+ F2.

Ga’ 44
tGa tGa

Let d; denote the number of elements in the set S,.. Then it is proved that
dyr—y = dim M ,(6a) = dim M, ,(6a).

Combinining this with the above identities, we obtain the proof of the following theorem

THEOREM 8.3 VU, gives the following isomorphisms:
Qﬁl\zol‘{z(oa) = 15'0,

!

(pU(T)—l hr>0 /\44’7\.”(6(1) ~ :17(:172 — 9y2).5'1.
BisoMy(6a) = 2(2? — 9y*)y(2* — y*) 5.
do(T) ™! Bizo Mpys(6a) = y(2® — y*)S5,

In §7 we gave the basis of My (3A) in terms of F34 and 34. It is observed

REMARK.
that this basis of My(3A4) is the same as the basis of M;(6a) given in terms of [, and

t(')'a 8

9 Concluding remarks

Nine non-compact arithmetic triangle groups are divided into three parts according to

their properties;
{1A,2A,3A} ,{2B,3B,4C} ,{2a,4q,6a} .

It scems that the theory of modular forms on each group in the same set holds many

properties in common. We will discuss some properties in subsequent papers under prepa-

ration.



e —CNCRIRC - ” I e s
10 Table ;

We give a few Fourier coefficients of generators of the ring of modular forms on nine
groups. By Remark at the end of §8, we know that the generators of the ring of modular
forms @r>oM}(6a) given in §8 are the same as those of ®r>oMar(3A), so we omit them

from our table.

Case of 1A
F14A = E4(T)7
— 14 240q¢ + 2160¢* 4+ 67204 + - - - A L{@@ 7
123 ., '
(1-==)2F, = Ee(7)
(1)
= 1 —504q — 16632¢* — 122976¢° + - - -
Case of 2A ‘A’\gq{i 3
Fi, = 1+48¢+ 624¢° + 1344¢° + 5232¢" + - -- g é, 8
| ; 5
= ihdr) +4E,(27)} A’
2561 . "9 S 3 o
(1= )M, = 1-1860 522060 136640 — T3076¢" £ .-
2A o
1 l@
= 5 {Bs(n) + 8E4(27)} M‘(%‘I a
B ; ;
5 ERE q—8q2+12q3+64q4—210q°+~--
2A
= nr)n(r)’ M(ﬁ% $
Case of 2B
[, = 1+ 24q+24¢* +96¢° + 24¢" + 144¢° + - -- / /
> = 2B,(27) - Bulr), ol (
I . : "
— Iy = q+8¢" +28¢° + 64¢" +126¢° + - -
" 2B { 1 1 1 1 H q/%%' /
g 27



Case of 3B

(12
1 3B

Case of 4C

Case of 2a

tZa

(1 48+/=3

._
[

Il

il 2r)'° -
Wy

14129+ 36¢" +12¢° + 84¢" +72¢° + - -- ﬂ'g6§5

—% {Ea(7) — 3E,(37)}

g +9¢° 4+ 27¢> + 73¢" + 126¢° + 243¢° + - \p(?

¢’ + 64° + 27¢" + 80¢° + 207¢° + - \ﬂ— ?X?}Z
\ AL 7573

14 8¢+ 24¢* + 32¢° + 24¢* + 48¢° + - - -
1
=3 {Ba(7) — 4B, (47)} ﬂ\( %

¢+4¢° +6¢° +8¢" + - --

n(4r)® @y 3.+-2'8.

) F;a = 142409 + 21()‘0q2 +6720¢% + - - -

= [Iy(7) 74’4&0?

( 24\/?3) I, = 1-504q - 16632¢> + - - - ‘ﬁ [ 3 7}3

l 2a

I k

— 8 = ¢ —12¢% +54q% — 88¢% 4.
i q 7 e 74:’/55
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Case of 4a

t4a t4a
1 1 32/—1
t4a t4a
1 1 164/—1
t‘ia t4a
Case of 3A
Fy,

1
108\ % _,
)

3A

s,
L,
(1-12)' ri
e

: 1
Fi = A7) +4E:(20))

FS = ¢b +20q7 — T4¢3 —24q7 + ---

—Fg, = q- 8¢ + 12¢° + 64¢* — 210¢° + - - -

AB6575

FS, = 1-56g—2296¢" — 13664¢” — 739764" + - --

fq 5T 438
Ao292%

F& = qb —84q7 —82¢% — 4567 + -

A34H| S04
A2 9%

1 + 24q + 216¢% + 888¢° + 1752¢* + - - - 5655

% {E4(7) + 9E4(37)}

1 — 18¢ — 594¢® — 4878¢> — 19026¢" — - - -

55 {Balr) + 21Eo(37)) 3K 307

1 + 48¢ + 1008¢° + 12144¢° + 92784¢" + - -- @31(‘{30k

q = 6q° — 27¢° — 92¢" + 390¢° + - - -
I + 6 — 810¢* — 22134¢> — 278634¢" — - --

q— 36(12 - 81q3 + 784¢* — 1314(15 SES T
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) - et
F3A T

ol 16 —_—
—FBA o
l3a

1
B2 s
(- s -

34 t3a

Case of 6a

o~
[}
e

H
Do
P
w
\_/

o~
<2
e

_
[\

P
(9%}

N
o~ s
@ [
2 ﬁ 13
(I8
e N e

/“\
—
|
(o2 2
D
w
b e g
| —
—_—
—
[\V]
P
w

1 {; 6\/—3) (1 = AR
tﬁa tGa t(;u
1 o 6v/—3
tgu t(}a

e T e T S e

1 + 72q + 2376¢> + 47592¢° + 646344¢" + - --

q + 304 4 333¢° + 1444¢" — 570¢° + - --

¢* — 124 + 54¢* — 100¢° + 45¢° + - - -

1 + 30q — 450¢> — 39390¢> — 9777304" — - --

q—12¢° - 7294 — 8048¢* — 30210¢° + - - -

¢ + 54¢* +1269¢° + 16304¢" + 134406¢° + - - -

q + 12¢> — 801¢® — 27248¢" — 389730¢" + - - -

-

o3

5

-

o3

e

DI~

&)
ge

o=

3

\_/
o2
8

(11/'2 & 15(1.3/2 & 54(15/2 57} 88([7/2 o 423q9/2 A

ql/Z

— 27¢*? — 378¢°* — 832¢"* + - --

¢ + 39¢4*% 4 630¢° + 5336¢™% + - --

1

S

q:i/ 2

30

_3q5/2_27(17/2+147(19/2+”.

3¢%% — 810¢%/% — 14848¢"* + - - -

— 45¢% + 297¢7/* — 759¢°* + - - -



) /e 6
w(1- 22 r
tGa tGa
1 12v/=3\#
L2
tGa tGa
1 g, e T S
el 1" 1'~ 1460
tGa tGu. tba
1 Bils oo i e
t(;u i(}u tGU
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