login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058549
McKay-Thompson series of class 19A for Monster.
5
1, 0, 6, 10, 21, 36, 61, 96, 156, 232, 357, 522, 768, 1092, 1563, 2174, 3039, 4164, 5695, 7686, 10362, 13792, 18333, 24138, 31706, 41316, 53712, 69348, 89319, 114396, 146114, 185724, 235482, 297252, 374316, 469578, 587646, 732888, 911961, 1131250
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(4*Pi*sqrt(n/19)) / (sqrt(2)*19^(1/4)*n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
G.f.: - 3 + (1/x) * ( G(x) * G(x^19) + x^4 * H(x) * H(x^19) )^3 where G() is g.f. of A003114 and H() is g.f. of A003106. - G. C. Greubel, Jun 25 2018
EXAMPLE
T19A = 1/q + 6*q + 10*q^2 + 21*q^3 + 36*q^4 + 61*q^5 + 96*q^6 + 156*q^7 + ...
MATHEMATICA
QP = QPochhammer; G[x_]:= 1/(QP[x, x^5]*QP[x^4, x^5]); H[x_]:= 1/(QP[x^2, x^5]*QP[x^3, x^5]); a:= CoefficientList[Series[-3 *x + (G[x]*G[x^19] + x^4*H[x]*H[x^19])^3, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 14 2018 *)
PROG
(PARI) q='q+O('q^40); A = (eta(q)*eta(q^19)/(eta(q^2)*eta(q^38)))^2; B = - (eta(-q)*eta(-q^19)/(eta(q^2)*eta(q^38)))^2; F = (q^4/(A*B) - (A + B)/(4*q))^3; v=Vec(F-3*q^2); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jun 25 2018
CROSSREFS
Cf. A136569 (same sequence except for n=0).
Sequence in context: A030007 A323729 A372295 * A363675 A271511 A287993
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved