login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003114 Number of partitions of n into parts 5k+1 or 5k+4.
(Formerly M0266)
173
1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 61, 70, 79, 91, 102, 117, 131, 149, 167, 189, 211, 239, 266, 299, 333, 374, 415, 465, 515, 575, 637, 709, 783, 871, 961, 1065, 1174, 1299, 1429, 1579, 1735, 1913, 2100, 2311, 2533, 2785 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Expansion of Rogers-Ramanujan function G(x) in powers of x.
Same as number of partitions into distinct parts where the difference between successive parts is >= 2.
As a formal power series, the limit of polynomials S(n,x): S(n,x)=sum(T(i,x),0<=i<=n); T(i,x)=S(i-2,x).x^i; T(0,x)=1,T(1,x)=x; S(n,1)=A000045(n+1), the Fibonacci sequence. - Claude Lenormand (claude.lenormand(AT)free.fr), Feb 04 2001
The Rogers-Ramanujan identity is 1 + Sum_{n >= 1} t^(n^2)/((1-t)*(1-t^2)*...*(1-t^n)) = Product_{n >= 1} 1/((1-t^(5*n-1))*(1-t^(5*n-4))).
Coefficients in expansion of permanent of infinite tridiagonal matrix:
1 1 0 0 0 0 0 0 ...
x 1 1 0 0 0 0 0 ...
0 x^2 1 1 0 0 0 ...
0 0 x^3 1 1 0 0 ...
0 0 0 x^4 1 1 0 ...
................... - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that the smallest part is greater than or equal to number of parts. - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that if k is the largest part, then each of {1, 2, ..., k-1} occur at least twice. Example: a(9)=5 because we have [3, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Feb 27 2006
Also number of partitions of n such that if k is the largest part, then k occurs at least k times. Example: a(9)=5 because we have [3, 3, 3], [2, 2, 2, 2, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Apr 16 2006
a(n) = number of NW partitions of n, for n >= 1; see A237981.
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[1](x). - N. J. A. Sloane, Nov 22 2015
Convolution of A109700 and A109697. - Vaclav Kotesovec, Jan 21 2017
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109, 238.
G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(e), p. 591.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 107.
G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 90-92.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.
H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
G. E. Andrews, Three aspects of partitions, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
G. E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.
George E. Andrews; R. J. Baxter, A motivated proof of the Rogers-Ramanujan identities, Amer. Math. Monthly 96 (1989), no. 5, 401-409.
R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986.
R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy)
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
P. Jacob and P. Mathieu, Parafermionic derivation of Andrews-type multiple-sums, arXiv:hep-th/0505097, 2005.
James Lepowsky and Minxian Zhu, A motivated proof of Gordon's identities, The Ramanujan Journal 29.1-3 (2012): 199-211.
I. Martinjak, D. Svrtan, New Identities for the Polarized Partitions and Partitions with d-Distant Parts, J. Int. Seq. 17 (2014) # 14.11.4.
A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), Research Paper 13, 122 pp.
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Identities.
Mingjia Yang, Doron Zeilberger, Systematic Counting of Restricted Partitions, arXiv:1910.08989 [math.CO], 2019.
FORMULA
G.f.: Sum_{k>=0} x^(k^2)/(Product_{i=1..k} 1-x^i).
The g.f. above is the special case D=2 of sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ), the g.f. for partitions into distinct part where the difference between successive parts is >= D. - Joerg Arndt, Mar 31 2014
G.f.: 1 + sum(i=1, oo, x^(5i+1)/prod(j=1 or 4 mod 5 and j<=5i+1, 1-x^j) + x^(5i+4)/prod(j=1 or 4 mod 5 and j<=5i+4, 1-x^j)). - Jon Perry, Jul 06 2004
G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2) / (Product_{i=1..k} 1 - x^(4*i))). - Michael Somos, Oct 19 2006
Euler transform of period 5 sequence [ 1, 0, 0, 1, 0, ...]. - Michael Somos, Oct 15 2008
Expansion of f(-x^5) / f(-x^1, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, May 17 2015
Expansion of f(-x^2, -x^3) / f(-x) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 13 2015
a(n) ~ phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * 5^(1/2) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(60*sqrt(15))) / sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 23 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284150(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
G.f. = 1/q + q^59 + q^119 + q^179 + 2*q^239 + 2*q^299 + 3*q^359 + 3*q^419 + ...
From Joerg Arndt, Dec 27 2012: (Start)
The a(16)=17 partitions of 16 where all parts are 1 or 4 (mod 5) are
[ 1] [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
[ 2] [ 4 1 1 1 1 1 1 1 1 1 1 1 1 ]
[ 3] [ 4 4 1 1 1 1 1 1 1 1 ]
[ 4] [ 4 4 4 1 1 1 1 ]
[ 5] [ 4 4 4 4 ]
[ 6] [ 6 1 1 1 1 1 1 1 1 1 1 ]
[ 7] [ 6 4 1 1 1 1 1 1 ]
[ 8] [ 6 4 4 1 1 ]
[ 9] [ 6 6 1 1 1 1 ]
[10] [ 6 6 4 ]
[11] [ 9 1 1 1 1 1 1 1 ]
[12] [ 9 4 1 1 1 ]
[13] [ 9 6 1 ]
[14] [ 11 1 1 1 1 1 ]
[15] [ 11 4 1 ]
[16] [ 14 1 1 ]
[17] [ 16 ]
The a(16)=17 partitions of 16 where successive parts differ by at least 2 are
[ 1] [ 7 5 3 1 ]
[ 2] [ 8 5 3 ]
[ 3] [ 8 6 2 ]
[ 4] [ 9 5 2 ]
[ 5] [ 9 6 1 ]
[ 6] [ 9 7 ]
[ 7] [ 10 4 2 ]
[ 8] [ 10 5 1 ]
[ 9] [ 10 6 ]
[10] [ 11 4 1 ]
[11] [ 11 5 ]
[12] [ 12 3 1 ]
[13] [ 12 4 ]
[14] [ 13 3 ]
[15] [ 14 2 ]
[16] [ 15 1 ]
[17] [ 16 ]
(End)
MAPLE
g:=sum(x^(k^2)/product(1-x^j, j=1..k), k=0..10): gser:=series(g, x=0, 65): seq(coeff(gser, x, n), n=0..60); # Emeric Deutsch, Feb 27 2006
MATHEMATICA
CoefficientList[ Series[Sum[x^k^2/Product[1 - x^j, {j, 1, k}], {k, 0, 10}], {x, 0, 65}], x][[1 ;; 61]] (* Jean-François Alcover, Apr 08 2011, after Emeric Deutsch *)
Table[Count[IntegerPartitions[n], p_ /; Min[p] >= Length[p]], {n, 24}] (* _Clark Kimberling, Feb 13 2014 *)
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, May 17 2015 *)
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 0, -1, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *)
nmax = 60; kmax = nmax/5;
s = Flatten[{Range[0, kmax]*5 + 1}~Join~{Range[0, kmax]*5 + 4}];
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
PROG
(PARI) {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1), n))}; /* Michael Somos, Oct 15 2008 */
(Haskell)
a003114 = p a047209_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Jan 05 2011
(Haskell)
a003114 = p 1 where
p _ 0 = 1
p k m = if k > m then 0 else p (k + 2) (m - k) + p (k + 1) m
-- Reinhard Zumkeller, Feb 19 2013
CROSSREFS
Cf. A188216 (least part k occurs at least k times).
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.
Row sums of A268187.
Sequence in context: A000607 A114372 A046676 * A185227 A217569 A335766
KEYWORD
easy,nonn,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:56 EDT 2024. Contains 370952 sequences. (Running on oeis4.)