login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058550
Eisenstein series E_14(q) (alternate convention E_7(q)).
37
1, -24, -196632, -38263776, -1610809368, -29296875024, -313495116768, -2325336249792, -13195750342680, -61004818143672, -240029297071632, -828545091454368, -2568152034827232, -7269002558214096, -19051479894545856, -46708710975763776
OFFSET
0,2
REFERENCES
R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
MAPLE
E := proc(k) local n, t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..60); series(t1, q, 60); end; E(14);
MATHEMATICA
terms = 16;
E14[x_] = 1 - 24*Sum[k^13*x^k/(1 - x^k), {k, 1, terms}];
E14[x] + O[x]^terms // CoefficientList[#, x]&
(* or: *)
Table[If[n == 0, 1, -24*DivisorSigma[13, n]], {n, 0, terms-1}] (* Jean-François Alcover, Feb 26 2018 *)
PROG
(PARI) a(n)=if(n<1, n==0, -24*sigma(n, 13))
CROSSREFS
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Sequence in context: A305760 A048057 A305757 * A145200 A007240 A289029
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 25 2000
STATUS
approved