login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008410
a(0) = 1, a(n) = 480*sigma_7(n).
46
1, 480, 61920, 1050240, 7926240, 37500480, 135480960, 395301120, 1014559200, 2296875360, 4837561920, 9353842560, 17342613120, 30119288640, 50993844480, 82051050240, 129863578080, 196962563520
OFFSET
0,2
COMMENTS
Eisenstein series E_8(q) (alternate convention E_4(q)); theta series of direct sum of 2 copies of E_8 lattice.
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123.
R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
S. Ramanujan, On Certain Arithmetical Functions, Messenger Math., 45 (1916), 11-15 (Eq. (25)). Collected Papers of Srinivasa Ramanujan, Chap. 16, Ed. G. H. Hardy et al., Chelsea, NY, 1962.
S. Ramanujan, On Certain Arithmetical Functions, Messenger Math., 45 (1916), 11-15 (Eq. (25)). Ramanujan's Papers, p. 196, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
LINKS
H. D. Nguyen, D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013; Mentions this sequence. - From N. J. A. Sloane, Mar 16 2014
Eric Weisstein's World of Mathematics, Eisenstein Series.
FORMULA
Equivalently, g.f. = (theta2^16+theta3^16+theta4^16)/2.
G.f. Sum{k>=0} a(k)q^(2k) = (theta2^16+theta3^16+theta4^16)/2.
Expansion of ((eta(q)^24 + 256 * eta(q^2)^24) / (eta(q) * eta(q^2))^8)^2 in powers of q. - Michael Somos, Dec 30 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = (t/i)^8 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
a(n) = 480*A013955(n). - R. J. Mathar, Oct 10 2012
EXAMPLE
G.f. = 1 + 480*q + 61920*q^2 + 1050240*q^3 + 7926240*q^4 + 37500480*q^5 + ...
MAPLE
E := proc(k) local n, t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..60); series(t1, q, 60); end; E(8);
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], 480 DivisorSigma[ 7, n]]; (* Michael Somos, Jun 04 2013 *)
nmax = 60; CoefficientList[Series[(Product[(1-x^k)^8 / (1+x^k)^8, {k, 1, nmax}] + 256 * x * Product[(1+x^k)^16 *(1-x^k)^8, {k, 1, nmax}])^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 480 * sigma(n, 7))};
(PARI) {a(n) = local(A, e1, e2, e4); if( n<0, 0, n*=2; A = x * O(x^n); e1 = eta(x + A)^16; e2 = eta(x^2 + A)^16; e4 = eta(x^4 + A)^16; polcoeff( (e1*e2^3 + 256*x^2 * e4*(e2^3 + e1^2*e4)) / (e1*e2*e4), n))}; /* Michael Somos, Jun 29 2005 */
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x + A)^24 + 256 * x * eta(x^2 + A)^24) / (eta(x + A) * eta(x^2 + A))^8)^2, n))}; /* Michael Somos, Dec 30 2008 */
(Sage) ModularForms( Gamma1(1), 8, prec=33).0; # Michael Somos, Jun 04 2013
(Magma) Basis( ModularForms( Gamma1(1), 8), 33) [1]; /* Michael Somos, May 27 2014 */
CROSSREFS
Cf. A013973.
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Convolution square of A004009.
Sequence in context: A022047 A107511 A288471 * A305569 A289638 A289744
KEYWORD
nonn
STATUS
approved