OFFSET
0,2
COMMENTS
The series Q(q), R(q) are modular forms, but P(q) is not. - Michael Somos, May 18 2017
REFERENCES
R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see pp. 111 and 113.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 19, Eq. (17).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), no. 2, 201-210.
J. H. Bruinier and K. Ono, Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms
Heng Huat Chan, Shaun Cooper, and Pee Choon Toh, Ramanujan's Eisenstein series and powers of Dedekind's eta-function, Journal of the London Mathematical Society 75.1 (2007): 225-242. See P(q).
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
H. Ochiai, Counting functions for branched covers of elliptic curves and quasi-modular forms, arXiv:math-ph/9909023, 1999.
Varin, V. P. Special solutions to Chazy equation Comput. Math. Math. Phys. 57, No. 2, 211-235 (2017), eq (75)
Eric Weisstein's World of Mathematics, Eisenstein Series.
FORMULA
a(n) = -24*sigma(n) = -24*A000203(n), for n>0.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 + 4*u2^2 + 9*u3^2 + 36*u6^2 - 8*u1*u2 + 6*u1*u3 + 24*u2*u6 - 72*u3*u6. - Michael Somos, May 29 2005
G.f.: 1 - 24*sum(k>=1, k*x^k/(1 - x^k)).
G.f.: 1 + 24 *x*deriv(eta(x))/eta(x) where eta(x) = prod(n>=1, 1-x^n); (cf. A000203). - Joerg Arndt, Sep 28 2012
G.f.: 1 - 24*x/(1-x) + 48*x^2/(Q(0) - 2*x^2 + 2*x), where Q(k)= (2*x^(k+2) - x - 1)*k - 1 - 2*x + 3*x^(k+2) - x*(k+1)*(k+3)*(1-x^(k+2))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
G.f.: q*Delta'/Delta where Delta is the generating function of Ramanujan's tau function (A000594). - Seiichi Manyama, Jul 15 2017
EXAMPLE
G.f. = 1 - 24*x - 72*x^2 - 96*x^3 - 168*x^4 - 144*x^5 - 288*x^6 + ...
MAPLE
E := proc(k) local n, t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..60); series(t1, q, 60); end; E(2);
MATHEMATICA
a[n_] := -24*DivisorSigma[1, n]; a[0] = 1; Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Dec 12 2012 *)
a[ n_] := If[ n < 1, Boole[n == 0], -24 DivisorSigma[ 1, n]]; (* Michael Somos, Apr 08 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, -24 * sigma(n))}; /* Michael Somos, Apr 09 2003 */
(Python)
from sympy import divisor_sigma
def a(n): return 1 if n == 0 else -24 * divisor_sigma(n)
[a(n) for n in range(51)] # Indranil Ghosh, Jul 15 2017
CROSSREFS
KEYWORD
sign,easy,nice
AUTHOR
STATUS
approved