The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145155 Coefficients in expansion of Delta'(q). 2
 1, -48, 756, -5888, 24150, -36288, -117208, 675840, -1022787, -1159200, 5880732, -4451328, -7510594, 5625984, 18257400, 15794176, -117400878, 49093776, 202566980, -142195200, -88609248, -282275136, 428795256, 510935040, -637480625, 360508512, -1978535160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS First derivative of cusp form Delta (see A000594). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998 FORMULA a(n) = (n+1) * A000594(n+1). - Seiichi Manyama, Feb 03 2017 EXAMPLE G.f. = 1 - 2*24*q + 3*252*q^2 - 4*1472*q^3 + 5*4830*q^4 - 6*6048*q^5 - 7*16744*q^6 + ... MAPLE with(numtheory); E:=proc(k) series(1-(2*k/bernoulli(k))*add( sigma[k-1](n)*q^n, n=1..60), q, 61); end; Delta:=series((E(4)^3-E(6)^2)/1728, q, 60); diff(%, q); CROSSREFS Cf. A000594. Sequence in context: A186162 A102279 A132464 * A105948 A192839 A014401 Adjacent sequences:  A145152 A145153 A145154 * A145156 A145157 A145158 KEYWORD sign AUTHOR N. J. A. Sloane, Feb 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 10:24 EDT 2021. Contains 342935 sequences. (Running on oeis4.)