login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145155 Coefficients in expansion of Delta'(q). 0
1, -48, 756, -5888, 24150, -36288, -117208, 675840, -1022787, -1159200, 5880732, -4451328, -7510594, 5625984, 18257400, 15794176, -117400878, 49093776, 202566980, -142195200, -88609248, -282275136, 428795256, 510935040, -637480625, 360508512, -1978535160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

First derivative of cusp form Delta (see A000594).

REFERENCES

M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998.

LINKS

Table of n, a(n) for n=0..26.

MAPLE

with(numtheory); E:=proc(k) series(1-(2*k/bernoulli(k))*add( sigma[k-1](n)*q^n, n=1..60), q, 61); end; Delta:=series((E(4)^3-E(6)^2)/1728, q, 60); diff(%, q);

CROSSREFS

Sequence in context: A186162 A102279 A132464 * A105948 A192839 A014401

Adjacent sequences:  A145152 A145153 A145154 * A145156 A145157 A145158

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Feb 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 31 14:22 EDT 2014. Contains 248867 sequences.