login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145200 Coefficients of expansion of Phi(tau) = E(2)*E(4)/(E(6)*j). 0
0, 1, -24, 196812, 38262208, 40310333070, 16012430173152, 10091293275887096, 5000566664612497920, 2783095702986935913957, 1463183098457857467833520, 790439623931093138858233092, 421526637613212526260386954496, 226162012708702132169932739559302, 120998755205524059896241960291393216 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998.

LINKS

Table of n, a(n) for n=0..14.

EXAMPLE

G.f. = q - 24*q^2 + 196812*q^3 + 38262208*q^4 + 40310333070*q^5 + 16012430173152*q^6 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (1 - 24 Sum[ DivisorSigma[ 1, k] x^k, {k, n}]) (1 + 240 Sum[ DivisorSigma[ 3, k] x^k, {k, n}]) / ((1 - 504 Sum[ DivisorSigma[ 5, k] x^k, {k, n}]) KleinInvariantJ[ Log[x] / (2 Pi I)] 1728), {x, 0, n}]; (* Michael Somos, Jan 15 2015 *)

CROSSREFS

Cf. A030185.

Sequence in context: A056947 A048057 A058550 * A007240 A173172 A061526

Adjacent sequences:  A145197 A145198 A145199 * A145201 A145202 A145203

KEYWORD

sign,changed

AUTHOR

N. J. A. Sloane, Feb 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 03:29 EDT 2017. Contains 284250 sequences.