|
|
A145200
|
|
Coefficients of expansion of Phi(tau) = E(2)*E(4)/(E(6)*j).
|
|
1
|
|
|
0, 1, -24, 196812, 38262208, 40310333070, 16012430173152, 10091293275887096, 5000566664612497920, 2783095702986935913957, 1463183098457857467833520, 790439623931093138858233092, 421526637613212526260386954496, 226162012708702132169932739559302, 120998755205524059896241960291393216
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..14.
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
|
|
FORMULA
|
a(n) ~ 2 * Pi^5 * exp(2*Pi*n) / (27 * Gamma(1/4)^8). - Vaclav Kotesovec, Apr 07 2018
|
|
EXAMPLE
|
G.f. = q - 24*q^2 + 196812*q^3 + 38262208*q^4 + 40310333070*q^5 + 16012430173152*q^6 + ...
|
|
MATHEMATICA
|
a[ n_] := SeriesCoefficient[ (1 - 24 Sum[ DivisorSigma[ 1, k] x^k, {k, n}]) (1 + 240 Sum[ DivisorSigma[ 3, k] x^k, {k, n}]) / ((1 - 504 Sum[ DivisorSigma[ 5, k] x^k, {k, n}]) KleinInvariantJ[ Log[x] / (2 Pi I)] 1728), {x, 0, n}]; (* Michael Somos, Jan 15 2015 *)
|
|
CROSSREFS
|
Cf. A030185.
Sequence in context: A056947 A048057 A058550 * A007240 A289029 A287964
Adjacent sequences: A145197 A145198 A145199 * A145201 A145202 A145203
|
|
KEYWORD
|
sign,changed
|
|
AUTHOR
|
N. J. A. Sloane, Feb 28 2009
|
|
STATUS
|
approved
|
|
|
|