The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289029 Exponents a(1), a(2), ... such that E_14, 1 - 24*q - 196632*q^2 + ... (A058550) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... . 10
 24, 196908, 42987544, 21974456220, 8544538312728, 3980088408377644, 1793770730037338136, 847156322106368439324, 401870774532436947447832, 193962999708079363021283628, 94363580764388112933729226776, 46332621615483591171320408201116 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence is related to the identity: E_4^2*E_6 = E_4*E_10 = E_6*E_8 = E_14. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..367 FORMULA a(n) = 2 * A110163(n) + A288851(n) = A110163(n) + A289024(n) = A288851(n) + A288471(n) = 28 + (1/n) * (Sum_{d|n} A008683(n/d) * (2/3 * A288261(d) + 1/2 * A288840(d))). a(n) = (1/n) * Sum_{d|n} A008683(n/d) * A289640(d). - Seiichi Manyama, Jul 09 2017 a(n) ~ exp(2*Pi*n) / n. - Vaclav Kotesovec, Mar 08 2018 CROSSREFS Cf. A288968 (k=2), A110163 (k=4), A288851 (k=6), A288471 (k=8), A289024 (k=10), A288990/A288989 (k=12), this sequence (k=14). Cf. A008683, A288261 (E_6/E_4), A288840 (E_8/E_6), A289640. Sequence in context: A058550 A145200 A007240 * A287964 A173172 A061526 Adjacent sequences:  A289026 A289027 A289028 * A289030 A289031 A289032 KEYWORD nonn AUTHOR Seiichi Manyama, Jun 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)