login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112146 McKay-Thompson series of class 9b for the Monster group. 4
1, 0, 9, -4, 0, 36, 2, 0, 126, 12, 0, 324, -21, 0, 801, 4, 0, 1764, 36, 0, 3744, -68, 0, 7452, 21, 0, 14400, 112, 0, 26748, -184, 0, 48510, 44, 0, 85536, 275, 0, 147924, -456, 0, 250452, 112, 0, 417276, 644, 0, 683640, -1019, 0, 1104948, 240, 0, 1761552, 1370, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

COMMENTS

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

LINKS

G. A. Edgar, Table of n, a(n) for n = -1..999

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of q^(1/3) * 3*( b(q) / c(q) + c(q) / b(q)) in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Mar 24 2007

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u+v)^3 - (u^2 + 3*u - 18) * (v^2 + 3*v - 18).

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + w^2 + u*w + 18*(u+w) - (w+u)*v^2 - 9*v + 54.

Expansion of ( (eta(q^3) / eta(q^9))^4 + 9 * (eta(q^9) / eta(q^3))^4) in powers of q.

a(3*n) = 0. a(3*n-1) = A058095(n). a(3*n + 1) = 9 * A128758(n). - Michael Somos, Feb 19 2015

EXAMPLE

T9b = 1/q + 9*q - 4*q^2 + 36*q^4 + 2*q^5 + 126*q^7 + 12*q^8 + 324*q^10 + ...

MATHEMATICA

QP = QPochhammer; s = (QP[q^3]^8 + 9*q^2*QP[q^9]^8)/(QP[q^3]^4*QP[q^9]^4) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)

PROG

(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^3 + A) / eta(x^9 + A))^4; polcoeff( A + 9*x^2 / A, n))}; /* Michael Somos, Mar 24 2007 */

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Cf. A058095, A128758.

Sequence in context: A203131 A259484 A021918 * A056897 A263192 A270309

Adjacent sequences:  A112143 A112144 A112145 * A112147 A112148 A112149

KEYWORD

sign

AUTHOR

Michael Somos, Aug 28 2005, Aug 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 09:05 EST 2017. Contains 295957 sequences.