OFFSET
-1,3
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1001
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2 * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017
Expansion of -4 + ((eta(q^2)*eta(q^10))^2/(eta(q)*eta(q^4)*eta(q^5)* eta(q^20)))^4 in powers of q. - G. C. Greubel, Jun 06 2018
EXAMPLE
T20A = 1/q +6*q +8*q^2 +17*q^3 +32*q^4 +54*q^5 +80*q^6 +...
MATHEMATICA
nmax = 60; Flatten[{1, 0, Rest[Rest[CoefficientList[Series[Product[((1 + x^(2*k-1))/((1 + x^(10*k))*(1 - x^(10*k-5))))^4, {k, 1, nmax}], {x, 0, nmax}], x]]]}] (* Vaclav Kotesovec, Apr 30 2017 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; A:= ((eta[q^2]*eta[q^10])^2/(eta[q] *eta[q^4]*eta[q^5]*eta[q^20]))^4; a:= CoefficientList[Series[q*(-4 + A), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 06 2018 *)
PROG
(PARI) q='q+O('q^30); F = ((eta(q^2)*eta(q^10))^2/(eta(q)*eta(q^4)* eta(q^5)*eta(q^20)))^4/q; Vec(-4 + F) \\ G. C. Greubel, Jun 06 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved