login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112161 McKay-Thompson series of class 24G for the Monster group. 1
1, -1, -2, 2, -1, 0, 5, -3, -4, 6, -3, -4, 12, -8, -10, 16, -9, -8, 29, -17, -22, 38, -20, -20, 61, -36, -44, 80, -43, -44, 121, -70, -82, 156, -84, -88, 229, -131, -154, 294, -158, -164, 417, -234, -268, 528, -284, -300, 730, -408, -462, 922, -495, -520, 1246, -690, -776, 1562, -837, -884, 2074, -1143 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of q^(1/4)*(eta(q)*eta(q^2))/(eta(q^3)*eta(q^6)) in powers of q. - G. C. Greubel, Jan 25 2018

EXAMPLE

T24G = 1/q -q^3 -2*q^7 +2*q^11 -q^15 +5*q^23 -3*q^27 -4*q^31 +...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_] := SeriesCoefficient[q^(1/4)*(eta[q]*eta[q^2])/(eta[q^3]*eta[q^6]), {q, 0, n}];  Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 25 2018)

PROG

(PARI) q='q+O('q^50); Vec((eta(q)*eta(q^2))/(eta(q^3)*eta(q^6))) \\ G. C. Greubel, Jun 19 2018

CROSSREFS

Sequence in context: A107267 A320530 A191239 * A128497 A011434 A147746

Adjacent sequences:  A112158 A112159 A112160 * A112162 A112163 A112164

KEYWORD

sign

AUTHOR

Michael Somos, Aug 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 03:13 EST 2019. Contains 319260 sequences. (Running on oeis4.)