login
A112161
McKay-Thompson series of class 24G for the Monster group.
1
1, -1, -2, 2, -1, 0, 5, -3, -4, 6, -3, -4, 12, -8, -10, 16, -9, -8, 29, -17, -22, 38, -20, -20, 61, -36, -44, 80, -43, -44, 121, -70, -82, 156, -84, -88, 229, -131, -154, 294, -158, -164, 417, -234, -268, 528, -284, -300, 730, -408, -462, 922, -495, -520, 1246, -690, -776, 1562, -837, -884, 2074, -1143
OFFSET
0,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of q^(1/4)*(eta(q)*eta(q^2))/(eta(q^3)*eta(q^6)) in powers of q. - G. C. Greubel, Jan 25 2018
EXAMPLE
T24G = 1/q -q^3 -2*q^7 +2*q^11 -q^15 +5*q^23 -3*q^27 -4*q^31 +...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_] := SeriesCoefficient[q^(1/4)*(eta[q]*eta[q^2])/(eta[q^3]*eta[q^6]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 25 2018)
PROG
(PARI) q='q+O('q^50); Vec((eta(q)*eta(q^2))/(eta(q^3)*eta(q^6))) \\ G. C. Greubel, Jun 19 2018
CROSSREFS
Sequence in context: A320530 A347986 A191239 * A128497 A011434 A147746
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved