login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112156
McKay-Thompson series of class 18g for the Monster group.
1
1, 3, 0, -2, 6, 0, -1, 15, 0, 4, 24, 0, -3, 48, 0, 0, 78, 0, 7, 132, 0, -8, 204, 0, -3, 324, 0, 14, 486, 0, -14, 735, 0, -4, 1068, 0, 26, 1563, 0, -26, 2220, 0, -7, 3159, 0, 44, 4404, 0, -41, 6135, 0, -10, 8412, 0, 73, 11508, 0, -72, 15552, 0, -20, 20964, 0, 118, 27978, 0, -109
OFFSET
0,2
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of A + 3*q/A, where A = q^(1/2)*(eta(q^3)/eta(q^9))^2, in powers of q. - G. C. Greubel, Jun 25 2018
EXAMPLE
T18g = 1/q + 3*q - 2*q^5 + 6*q^7 - q^11 + 15*q^13 + 4*q^17 + 24*q^19 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q^3]/eta[q^9])^2; a:= CoefficientList[Series[A + 3*q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 25 2018 *)
PROG
(PARI) q='q+O('q^50); A = (eta(q^3)/eta(q^9))^2; Vec(A + 3*q/A) \\ G. C. Greubel, Jun 25 2018
CROSSREFS
Sequence in context: A255008 A222602 A058544 * A285723 A072328 A135040
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved