login
A135040
Decimal expansion of the unique root of equation N(-x) = N'(x), where N(x) is a cumulative standard normal distribution function, N'(x) = 1/sqrt( 2*Pi )*exp( -(x^2)/2 ).
1
3, 0, 2, 6, 3, 0, 8, 4, 0, 7, 1, 1, 5, 7, 2, 7, 4, 0, 8, 5, 2, 8, 4, 5, 6, 6, 3, 1, 8, 4, 2, 6, 8, 5, 1, 5, 3, 1, 3, 5, 5, 7, 8, 4, 3, 0, 7, 2, 2, 7, 5, 4, 5, 1, 5, 8, 4, 9, 2, 2, 3, 6, 3, 5, 4, 9, 2, 2, 2, 2, 5, 8, 5, 9, 6, 0, 0, 4, 6, 1, 6, 3, 6, 9, 6, 0, 7, 7, 1, 0, 0, 3, 5, 4, 6, 4, 5, 0, 2, 3, 4, 2, 9, 6, 1
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Standard Normal Distribution
Eric Weisstein's World of Mathematics, Normal Distribution Function
Eric Weisstein's World of Mathematics, Normal Distribution
EXAMPLE
c = 0.302630840711572740852845663184268515313557843072275451584922363....
MATHEMATICA
FindRoot[ Exp[ -(x^2)/2 ] == Integrate[ Exp[ -(t^2)/2 ], {t, -Infinity, -x} ], {x, 0}]
RealDigits[x /. FindRoot[E^(-(x^2/2)) == Sqrt[Pi/2]*Erfc[x/Sqrt[2]], {x, 0}, WorkingPrecision -> 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
CROSSREFS
Sequence in context: A112156 A285723 A072328 * A048733 A309973 A298058
KEYWORD
cons,nonn
AUTHOR
Alexander Adamchuk, Feb 29 2008, Mar 10 2008
STATUS
approved