|
|
A058678
|
|
McKay-Thompson series of class 42d for Monster.
|
|
1
|
|
|
1, 1, 2, 2, 4, 5, 7, 8, 12, 14, 20, 23, 31, 37, 47, 56, 71, 84, 104, 122, 151, 178, 215, 252, 303, 355, 423, 492, 582, 676, 795, 920, 1076, 1242, 1445, 1662, 1926, 2210, 2549, 2916, 3353, 3827, 4386, 4992, 5703, 6478, 7379, 8362, 9499, 10742, 12174, 13738, 15533, 17496, 19736, 22190, 24979
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = -1..1000
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
Index entries for McKay-Thompson series for Monster simple group
|
|
FORMULA
|
Expansion of q^(1/2)*(eta(q^3)*eta(q^7)/(eta(q)*eta(q^21))) in powers of q. - G. C. Greubel, Jun 26 2018
a(n) ~ exp(2*Pi*sqrt(2*n/21)) / (2^(3/4) * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 26 2018
|
|
EXAMPLE
|
T42d = 1/q + q + 2*q^3 + 2*q^5 + 4*q^7 + 5*q^9 + 7*q^11 + 8*q^13 + 12*q^15 + ...
|
|
MATHEMATICA
|
eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/2)*(eta[q^3]*eta[q^7]/(eta[q]*eta[q^21])), {q, 0, 60}], q]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jun 26 2018 *)
|
|
PROG
|
(PARI) q='q+O('q^60); Vec(eta(q^3)*eta(q^7)/(eta(q)*eta(q^21))) \\ G. C. Greubel, Jun 26 2018
|
|
CROSSREFS
|
Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.
Sequence in context: A036406 A029007 A338202 * A241410 A324753 A283106
Adjacent sequences: A058675 A058676 A058677 * A058679 A058680 A058681
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Nov 27 2000
|
|
EXTENSIONS
|
Terms a(12) onward added by G. C. Greubel, Jun 26 2018
|
|
STATUS
|
approved
|
|
|
|