login
A058679
McKay-Thompson series of class 44A for Monster.
1
1, 0, 1, 2, 4, 4, 5, 6, 9, 12, 13, 18, 25, 28, 33, 44, 54, 64, 74, 92, 114, 132, 155, 186, 224, 260, 303, 360, 424, 488, 565, 662, 770, 888, 1018, 1180, 1366, 1560, 1780, 2048, 2345, 2668, 3034, 3460, 3946, 4468, 5052, 5734, 6502, 7328, 8255, 9320, 10512
OFFSET
-1,4
COMMENTS
Also McKay-Thompson series of class 44B for Monster. - Michel Marcus, Feb 24 2014
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
David A. Madore, Coefficients of Moonshine (McKay-Thompson) series, The Math Forum
FORMULA
Expansion of -2 + ((eta(q^2)*eta(q^22))^2/( eta(q)*eta(q^4)*eta(q^11)* eta(q^44)))^2 in powers of q. - G. C. Greubel, Jun 26 2018
a(n) ~ exp(2*Pi*sqrt(n/11)) / (2 * 11^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
EXAMPLE
T44A = 1/q + q + 2*q^2 + 4*q^3 + 4*q^4 + 5*q^5 + 6*q^6 + 9*q^7 + 12*q^8 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; A:= ((eta[q^2]*eta[q^22])^2/( eta[q]* eta[q^4]*eta[q^11] eta[q^44]))^2; a:= CoefficientList[Series[-2 + A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 26 2018 *)
PROG
(PARI) q='q+O('q^50); F = -2 + ((eta(q^2)*eta(q^22))^2/( eta(q)*eta(q^4) *eta(q^11)*eta(q^44)))^2/q; Vec(F) \\ G. C. Greubel, Jun 26 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 24 2014
STATUS
approved