login
A075754
Number of n X n (0,1) matrices containing exactly five 1's in each row and in each column.
4
1, 720, 3110940, 24046189440, 315031400802720, 6736218287430460752, 226885231700215713535680, 11649337108041078980732943360, 885282776210120715086715619724160, 96986285294151066094112970262797953280
OFFSET
5,2
COMMENTS
Also number of ways to arrange 5n rooks on an n X n chessboard, with no more than 5 rooks in each row and column. - Vaclav Kotesovec, Aug 04 2013
Generally (Canfield + McKay, 2004), a(n) ~ exp(-1/2)*binomial(n,s)^(2*n) / binomial(n^2,s*n), or a(n) ~ sqrt(2*Pi)*exp(-n*s-1/2*(s-1)^2)*(n*s)^(n*s+1/2)*(s!)^(-2*n). - Vaclav Kotesovec, Aug 04 2013
REFERENCES
B. D. McKay, Applications of a technique for labeled enumeration, Congressus Numerantium, 40 (1983) 207-221.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 5..61, (computed with program by Doron Zeilberger, see link below)
M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
FORMULA
From Vaclav Kotesovec, Aug 04 2013: (Start)
a(n) ~ exp(-1/2)*binomial(n,5)^(2*n) / binomial(n^2,5*n), (Canfield + McKay, 2004)
a(n) ~ sqrt(Pi)*2^(1/2-6*n)*5^(3*n+1/2) *9^(-n)*exp(-5*n-8)*n^(5*n+1/2)
(End)
CROSSREFS
Column 5 of A008300.
Sequence in context: A227668 A010799 A283830 * A318711 A143476 A008979
KEYWORD
nonn
AUTHOR
Michel Buffet (buffet(AT)engref.fr), Oct 08 2002
EXTENSIONS
More terms from Brendan McKay, Jan 08 2005
STATUS
approved