login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058508 McKay-Thompson series of class 15A for Monster. 3
1, 0, 8, 22, 42, 70, 155, 246, 421, 722, 1101, 1730, 2761, 4062, 6106, 9040, 13065, 18806, 27081, 37950, 53183, 74290, 102213, 140048, 191612, 258426, 348300, 467484, 622023, 825016, 1090957, 1432290, 1875930, 2448610, 3179136, 4114996 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = -1..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

a(n) ~ exp(4*Pi*sqrt(n/15)) / (sqrt(2) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017

EXAMPLE

T15A = 1/q + 8*q + 22*q^2 + 42*q^3 + 70*q^4 + 155*q^5 + 246*q^6 + 421*q^7 + ...

MATHEMATICA

QP = QPochhammer; A = QP[q]*(QP[q^5]/(QP[q^3]*QP[q^15])); s = -4q + (A + 3*(q/A))^2 + O[q]^40; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 16 2015, adapted from A153765 *)

PROG

(PARI) q='q+O('q^30); F= (eta(q)*eta(q^5)/(eta(q^3)*eta(q^15)))^2; Vec(2*q + F + 9*q^2/F) \\ G. C. Greubel, Jun 03 2018

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Cf. A134783 (same sequence except for n=0).

Sequence in context: A063301 A030999 A113744 * A134783 A211529 A069099

Adjacent sequences:  A058505 A058506 A058507 * A058509 A058510 A058511

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

More terms from Michel Marcus, Feb 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 16:40 EST 2019. Contains 319271 sequences. (Running on oeis4.)