The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058761 McKay-Thompson series of class 84a for Monster. 1
 1, -2, -1, -1, -1, -2, -1, -2, -2, -2, -2, -4, -3, -5, -4, -5, -5, -9, -6, -11, -9, -11, -11, -16, -13, -21, -19, -22, -22, -31, -25, -38, -35, -42, -41, -53, -48, -66, -62, -73, -75, -92, -84, -111, -107, -126, -127, -154, -145, -182, -180, -205, -211, -251, -242, -293, -291, -334 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,2 LINKS G. C. Greubel, Table of n, a(n) for n = -1..1000 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994). FORMULA Expansion of A - q/A, where A = q^(1/2)*(eta(q)*eta(q^6)*eta(q^14)* eta(q^21)/(eta(q^2)*eta(q^3)*eta(q^7)*eta(q^42))), in powers of q. - G. C. Greubel, Jun 30 2018 a(n) ~ -exp(2*Pi*sqrt(n/21)) / (2 * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 10 2018 EXAMPLE T84a = 1/q - 2*q - q^3 - q^5 - q^7 - 2*q^9 - q^11 - 2*q^13 - 2*q^15 - 2*q^17 - ... MATHEMATICA eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q]*eta[q^6] *eta[q^14]*eta[q^21]/(eta[q^2]*eta[q^3]*eta[q^7]*eta[q^42])); a:= CoefficientList[Series[ Simplify[A - q/A, q>0] , {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 30 2018 *) PROG (PARI) q='q+O('q^50); A = (eta(q)*eta(q^6)*eta(q^14)* eta(q^21)/( eta(q^2)*eta(q^3)*eta(q^7)*eta(q^42))); Vec(A - q/A) \\ G. C. Greubel, Jun 30 2018 CROSSREFS Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. Sequence in context: A082370 A005136 A138474 * A050119 A290253 A097637 Adjacent sequences:  A058758 A058759 A058760 * A058762 A058763 A058764 KEYWORD sign AUTHOR N. J. A. Sloane, Nov 27 2000 EXTENSIONS Terms a(12) onward added by G. C. Greubel, Jun 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 14:21 EDT 2020. Contains 334787 sequences. (Running on oeis4.)