login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058099 McKay-Thompson series of class 10C for Monster. 2
1, 0, -3, 6, 2, 2, -5, -16, 12, 2, 17, -10, -48, 56, 10, 24, -35, -126, 106, 14, 94, -70, -284, 296, 60, 152, -175, -620, 536, 80, 398, -320, -1243, 1218, 216, 652, -680, -2422, 2122, 328, 1435, -1190, -4470, 4240, 734, 2312, -2285, -8120, 7130, 1112, 4549, -3850, -14178, 13132, 2210 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of 2 + (eta(q)*eta(q^2)/(eta(q^5)*eta(q^10)))^2 in powers of q. - G. C. Greubel, May 05 2018

EXAMPLE

T10C = 1/q - 3*q + 6*q^2 + 2*q^3 + 2*q^4 - 5*q^5 - 16*q^6 + 12*q^7 + 2*q^8 + ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q] a:= CoefficientList[Series[2 + (eta[q]*eta[q^2]/(eta[q^5]*eta[q^10]))^2, {q, 0, 50}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, May 05 2018 *)

PROG

(PARI) q='q+O('q^30); Vec(2 + (eta(q)*eta(q^2)/(eta(q^5)*eta(q^10)))^2/q) \\ G. C. Greubel, May 05 2018

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Cf. A132041 (same sequence except for n=0).

Sequence in context: A159963 A120907 A133358 * A292789 A124085 A132120

Adjacent sequences:  A058096 A058097 A058098 * A058100 A058101 A058102

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

More terms from Michel Marcus, Feb 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 10:30 EST 2019. Contains 319218 sequences. (Running on oeis4.)