login
A058099
McKay-Thompson series of class 10C for Monster.
2
1, 0, -3, 6, 2, 2, -5, -16, 12, 2, 17, -10, -48, 56, 10, 24, -35, -126, 106, 14, 94, -70, -284, 296, 60, 152, -175, -620, 536, 80, 398, -320, -1243, 1218, 216, 652, -680, -2422, 2122, 328, 1435, -1190, -4470, 4240, 734, 2312, -2285, -8120, 7130, 1112, 4549, -3850, -14178, 13132, 2210
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of 2 + (eta(q)*eta(q^2)/(eta(q^5)*eta(q^10)))^2 in powers of q. - G. C. Greubel, May 05 2018
EXAMPLE
T10C = 1/q - 3*q + 6*q^2 + 2*q^3 + 2*q^4 - 5*q^5 - 16*q^6 + 12*q^7 + 2*q^8 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q] a:= CoefficientList[Series[2 + (eta[q]*eta[q^2]/(eta[q^5]*eta[q^10]))^2, {q, 0, 50}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, May 05 2018 *)
PROG
(PARI) q='q+O('q^30); Vec(2 + (eta(q)*eta(q^2)/(eta(q^5)*eta(q^10)))^2/q) \\ G. C. Greubel, May 05 2018
CROSSREFS
Cf. A132041 (same sequence except for n=0).
Sequence in context: A159963 A120907 A133358 * A292789 A124085 A132120
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved