login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112145 McKay-Thompson series of class 8c for the Monster group. 3
1, -8, -6, -48, 15, -168, -26, -496, 51, -1296, -102, -3072, 172, -6840, -276, -14448, 453, -29184, -728, -56880, 1128, -107472, -1698, -197616, 2539, -354888, -3780, -624048, 5505, -1076736, -7882, -1826416, 11238, -3050400, -15918, -5022720, 22259, -8163152, -30810 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence agrees with A058088 except for alternating signs: T8c(q) = i*T8b(i*q). - G. A. Edgar, Mar 25 2017

REFERENCES

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

LINKS

G. A. Edgar, Table of n, a(n) for n = 0..503

Index entries for McKay-Thompson series for Monster simple group

D. Alexander, C. Cummins, J. McKay and C. Simons, Completely Replicable Functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.

FORMULA

Expansion of q^(1/2)*(eta(q^4)^8*eta(q)^4 / (eta(q^2)^8*eta(q^8)^4) - 4*eta(q^2)^8*eta(q^8)^4 / (eta(q)^4*eta(q^4)^8)) in powers of q. - G. A. Edgar, Mar 25 2017

EXAMPLE

T8c = 1/q -8*q -6*q^3 -48*q^5 +15*q^7 -168*q^9 -26*q^11 +...

CROSSREFS

Cf. A058088.

Sequence in context: A075486 A123875 A217479 * A058088 A248291 A038284

Adjacent sequences:  A112142 A112143 A112144 * A112146 A112147 A112148

KEYWORD

sign

AUTHOR

Michael Somos, Aug 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 17:30 EST 2017. Contains 295959 sequences.