login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058589 McKay-Thompson series of class 24f for Monster. 2
1, -3, -1, -3, -2, -9, 2, -9, -1, -24, 0, -27, 5, -51, -3, -60, -4, -108, 6, -129, -3, -210, -4, -252, 12, -393, -8, -474, -10, -702, 16, -852, -9, -1224, -8, -1485, 29, -2070, -17, -2511, -22, -3429, 38, -4155, -20, -5556, -20, -6723, 61, -8856, -36, -10695, -44, -13878, 80, -16722, -43 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of A - 3*q/A, where A = q^(1/2)*(eta(q^2)*eta(q^4))/(eta(q^6) *eta(q^12)), in powers of q. - G. C. Greubel, Jun 18 2018

EXAMPLE

T24f = 1/q - 3*q - q^3 - 3*q^5 - 2*q^7 - 9*q^9 + 2*q^11 - 9*q^13 - q^15 - ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q^2]*eta[q^4])/( eta[q^6]*eta[q^12]); a:= CoefficientList[Series[A - 3*q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 0, 50}] (* G. C. Greubel, Jun 18 2018 *)

PROG

(PARI) q='q+O('q^50); A = (eta(q^2)*eta(q^4))/(eta(q^6) *eta(q^12)); Vec(A - 3*q/A) \\ G. C. Greubel, Jun 18 2018

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Sequence in context: A305735 A248947 A133916 * A112164 A300580 A075676

Adjacent sequences:  A058586 A058587 A058588 * A058590 A058591 A058592

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

Terms a(12) onward added by G. C. Greubel, Jun 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 10:21 EST 2019. Contains 319218 sequences. (Running on oeis4.)