login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A112188
McKay-Thompson series of class 48c for the Monster group.
1
1, -1, 1, 1, 0, -1, 0, 1, 1, 0, 2, 1, 1, -1, 1, 2, 2, -2, 2, 1, 1, -2, 2, 2, 4, -3, 4, 4, 2, -4, 2, 4, 5, -4, 6, 5, 5, -6, 5, 7, 8, -7, 8, 7, 6, -8, 8, 9, 13, -12, 14, 13, 10, -14, 10, 14, 17, -14, 20, 17, 17, -19, 18, 22, 24, -24, 26, 24, 22, -26, 26, 29, 37, -34, 39, 38, 32, -40, 34, 42, 48, -44, 54, 49
OFFSET
0,11
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of sqrt(T24g - 2*q) in powers of q, where T24g = A112164. - G. C. Greubel, Jul 01 2018
EXAMPLE
T48c = 1/q - q + q^3 + q^5 - q^9 + q^13 + q^15 + 2*q^19 + q^21 + q^23 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; nmax = 100; A:= q*(eta[q^4]*eta[q^8]/ (eta[q^12]*eta[q^24])); T24g := A + 3*q^2/A; a:= CoefficientList[ Series[(T24g - 2*q + O[q]^nmax)^(1/2), {q, 0, 60}], q]; Table[a[[n]], {n, 0, 50}] (* G. C. Greubel, Jul 01 2018 *)
PROG
(PARI) q='q+O('q^50); A = eta(q^4)*eta(q^8)/(eta(q^12)*eta(q^24)); T24g = A+ 3*q^2/A; Vec(sqrt(T24g - 2*q)) \\ G. C. Greubel, Jul 01 2018
CROSSREFS
Sequence in context: A122771 A217710 A112190 * A112189 A112191 A328523
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved