login
A058727
McKay-Thompson series of class 60C for Monster.
4
1, 0, 1, 1, 2, 2, 2, 3, 5, 5, 5, 7, 9, 10, 11, 14, 18, 20, 22, 27, 32, 36, 40, 48, 57, 63, 70, 82, 95, 106, 119, 137, 158, 175, 195, 222, 252, 280, 311, 352, 397, 439, 486, 546, 611, 676, 747, 834, 929, 1024, 1128, 1253, 1389, 1528, 1679, 1857, 2052, 2250, 2467, 2718
OFFSET
-1,5
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
Expansion of (eta(q^6)*eta(q^10))^3 /(eta(q^2)*eta(q^3)* eta(q^5)* eta(q^12)*eta(q^20)* eta(q^30)) in powers of q. - G. C. Greubel, Jan 23 2018
EXAMPLE
T60C = 1/q + q + q^2 + 2*q^3 + 2*q^4 + 2*q^5 + 3*q^6 + 5*q^7 + 5*q^8 + 5*q^9 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[(eta[q^6]* eta[q^10])^3 /(eta[q^2]*eta[q^3]* eta[q^5]*eta[q^12]*eta[q^20]* eta[q^30]), {q, 0, n}]; Table[a[n], {n, -1, 50}] (* G. C. Greubel, Jan 23 2018 *)
CROSSREFS
Cf. A145725 (same sequence except for n=0).
Sequence in context: A058618 A135213 A145725 * A304683 A035658 A077018
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved