login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058727 McKay-Thompson series of class 60C for Monster. 4
1, 0, 1, 1, 2, 2, 2, 3, 5, 5, 5, 7, 9, 10, 11, 14, 18, 20, 22, 27, 32, 36, 40, 48, 57, 63, 70, 82, 95, 106, 119, 137, 158, 175, 195, 222, 252, 280, 311, 352, 397, 439, 486, 546, 611, 676, 747, 834, 929, 1024, 1128, 1253, 1389, 1528, 1679, 1857, 2052, 2250, 2467, 2718 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,5

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017

Expansion of (eta(q^6])*eta(q^10))^3 /(eta(q^2)*eta(q^3)* eta(q^5)* eta(q^12)*eta(q^20)* eta(q^30)) in powers of q. - G. C. Greubel, Jan 23 2018

EXAMPLE

T60C = 1/q + q + q^2 + 2*q^3 + 2*q^4 + 2*q^5 + 3*q^6 + 5*q^7 + 5*q^8 + 5*q^9 + ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[(eta[q^6]* eta[q^10])^3 /(eta[q^2]*eta[q^3]* eta[q^5]*eta[q^12]*eta[q^20]* eta[q^30]), {q, 0, n}]; Table[a[n], {n, -1, 50}] (* G. C. Greubel, Jan 23 2018 *)

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Cf. A145725 (same sequence except for n=0).

Sequence in context: A058618 A135213 A145725 * A304683 A035658 A077018

Adjacent sequences:  A058724 A058725 A058726 * A058728 A058729 A058730

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

More terms from Michel Marcus, Feb 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 06:59 EST 2019. Contains 319188 sequences. (Running on oeis4.)