login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058727
McKay-Thompson series of class 60C for Monster.
4
1, 0, 1, 1, 2, 2, 2, 3, 5, 5, 5, 7, 9, 10, 11, 14, 18, 20, 22, 27, 32, 36, 40, 48, 57, 63, 70, 82, 95, 106, 119, 137, 158, 175, 195, 222, 252, 280, 311, 352, 397, 439, 486, 546, 611, 676, 747, 834, 929, 1024, 1128, 1253, 1389, 1528, 1679, 1857, 2052, 2250, 2467, 2718
OFFSET
-1,5
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
Expansion of (eta(q^6)*eta(q^10))^3 /(eta(q^2)*eta(q^3)* eta(q^5)* eta(q^12)*eta(q^20)* eta(q^30)) in powers of q. - G. C. Greubel, Jan 23 2018
EXAMPLE
T60C = 1/q + q + q^2 + 2*q^3 + 2*q^4 + 2*q^5 + 3*q^6 + 5*q^7 + 5*q^8 + 5*q^9 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[(eta[q^6]* eta[q^10])^3 /(eta[q^2]*eta[q^3]* eta[q^5]*eta[q^12]*eta[q^20]* eta[q^30]), {q, 0, n}]; Table[a[n], {n, -1, 50}] (* G. C. Greubel, Jan 23 2018 *)
CROSSREFS
Cf. A145725 (same sequence except for n=0).
Sequence in context: A058618 A135213 A145725 * A304683 A035658 A077018
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved