The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212626 Number of largest independent vertex subsets of the rooted tree with Matula-Goebel number n. 10
 1, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 2, 2, 2, 4, 1, 2, 5, 1, 1, 1, 4, 5, 2, 1, 5, 1, 1, 1, 2, 4, 1, 1, 1, 3, 4, 2, 2, 2, 1, 5, 3, 1, 3, 6, 1, 2, 2, 1, 1, 3, 3, 1, 9, 5, 1, 1, 2, 1, 2, 4, 1, 1, 1, 7, 7, 2, 1, 6, 1, 1, 4, 3, 4, 2, 1, 1, 8, 3, 1, 1, 2, 1, 2, 1, 3, 1, 3, 2, 4, 2, 1, 5, 6, 3, 2, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A vertex subset in a tree is said to be independent if no pair of vertices is connected by an edge. The empty set is considered to be independent. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. REFERENCES F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143. I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142. I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22. D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273. LINKS E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288. FORMULA In A212623 one finds the generating polynomial P(n,x) with respect to the number of vertices of the independent vertex subsets of the rooted tree with Matula-Goebel number n. We have a(n) = coefficient of the largest power of x in P(n,x). EXAMPLE a(5)= 3 because the rooted tree with Matula-Goebel number 5 is the path tree R - A - B - C with independent vertex subsets: {}, {R}, {A}, {B}, {C}, {R,B}, {R,C}, {A,C}; the largest size (namely 2) is attained by 3 of them. MAPLE with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [x, 1] elif bigomega(n) = 1 then [expand(x*A(pi(n))), expand(A(pi(n)))+A(pi(n))] else [sort(expand(A(r(n))*A(s(n))/x)), sort(expand(A(r(n))*A(s(n))))] end if end proc: P := proc (n) options operator, arrow: sort(A(n)+A(n)) end proc: a := proc (n) options operator, arrow: coeff(P(n), x, degree(P(n))) end proc: seq(a(n), n = 1 .. 120); CROSSREFS Cf. A212618, A212619, A212620, A212621, A212622, A212623, A212624, A212625, A212627, A212628, A212629, A212630, A212631, A212632. Sequence in context: A034931 A248473 A307116 * A090402 A026082 A117185 Adjacent sequences:  A212623 A212624 A212625 * A212627 A212628 A212629 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 08:39 EDT 2020. Contains 334620 sequences. (Running on oeis4.)