login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184161 Number of subtrees in the rooted tree with Matula-Goebel number n. 4
1, 3, 6, 6, 10, 10, 11, 11, 15, 15, 15, 17, 17, 17, 21, 20, 17, 25, 20, 24, 24, 21, 25, 30, 28, 25, 36, 28, 24, 34, 21, 37, 28, 24, 32, 44, 30, 30, 34, 41, 25, 40, 28, 32, 48, 36, 34, 55, 37, 45, 32, 40, 37, 64, 36, 49, 41, 34, 24, 59, 44, 28, 57, 70, 44, 44, 30, 37, 48, 53, 41, 81, 40, 44, 63, 49, 41, 56, 32, 74 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

REFERENCES

É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.

F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.

I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.

I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.

D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

LINKS

Table of n, a(n) for n=1..80.

E. Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288, 2011

Index entries for sequences related to Matula-Goebel numbers

FORMULA

Let b(n)=A184160(n) denote the number of those subtrees of the rooted tree with Matula-Goebel number n that contain the root. Then a(1)=1; if n=p(t) (=the t=th prime), then a(n)=1+a(t)+b(t); if n=rs (r,s,>=2), then a(n)=a(r)+a(s)+(b(r)-1)(b(s)-1)-1. The Maple program is based on this recursive formula.

EXAMPLE

a(4) = 6 because the rooted tree with Matula-Goebel number 4 is V; it has 6 subtrees (three 1-vertex subtrees, two 1-edge subtrees, and the tree itself).

MAPLE

with(numtheory): a := proc (n) local r, s, b: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: b := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then 1+b(pi(n)) else b(r(n))*b(s(n)) end if end proc: if n = 1 then 1 elif bigomega(n) = 1 then a(pi(n))+b(pi(n))+1 else a(r(n))+a(s(n))+(b(r(n))-1)*(b(s(n))-1)-1 end if end proc: seq(a(n), n = 1 .. 80);

CROSSREFS

Cf. A184160.

Sequence in context: A108850 A111652 A159787 * A276000 A316563 A316140

Adjacent sequences:  A184158 A184159 A184160 * A184162 A184163 A184164

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Oct 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 05:29 EST 2018. Contains 317333 sequences. (Running on oeis4.)