login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004141 Norm of a matrix.
(Formerly M1876)
2
1, 2, 8, 48, 256, 1280, 6912, 39424, 212992, 1118208, 6553600, 36765696, 199229440, 1133117440, 6499598336, 36175872000, 200655503360, 1167945891840, 6620826304512, 36681168191488, 212364657950720, 1219998345330688, 6864598984556544, 38958828003262464, 226089827240509440, 1287455960675123200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Maximum in the row n-1 of the absolute values of the triangle A127674. - R. J. Mathar, Jul 15 2015

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..26.

D. W. Kammler and R. J. McGlinn, Local conditioning of parametric forms used to approximate continuous functions, Amer. Math. Monthly, 86 (1979), 841-845.

D. W. Kammler and R. J. McGlinn, Local conditioning of parametric forms used to approximate continuous functions, Amer. Math. Monthly, 86 (1979), 841-845. [Annotated scan of page 843 only]

FORMULA

The scanned page from Kammler and McGlinn (page 843 of the article) gives a fairly explicit way to calculate a(n). - N. J. A. Sloane, Jul 09 2015

MAPLE

A := proc(n, k)

    2*n/(n+k)*binomial(n+k, n-k)*2^(2*k-1) ;

end proc:

A004141 := proc(n)

    seq(abs(A(n, k)), k=0..n-1) ;

    max(%) ;

end proc:

seq(A004141(n), n=1..30) ; # R. J. Mathar, Jul 15 2015

CROSSREFS

Cf. A259868.

Sequence in context: A228288 A292277 A173841 * A009693 A192251 A104190

Adjacent sequences:  A004138 A004139 A004140 * A004142 A004143 A004144

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 03:08 EST 2019. Contains 319370 sequences. (Running on oeis4.)