login
A058533
McKay-Thompson series of class 18C for the Monster group.
5
1, 0, 3, -2, 3, -6, 10, -12, 15, -22, 30, -36, 44, -60, 78, -96, 117, -150, 190, -228, 276, -340, 420, -504, 603, -732, 885, -1052, 1245, -1488, 1770, -2088, 2454, -2902, 3420, -3996, 4666, -5460, 6378, -7400, 8583, -9972, 11566, -13344, 15378, -17752, 20448
OFFSET
-1,3
COMMENTS
A058533, A123676, A215412, A058644, A215413 are all essentially the same sequence. - N. J. A. Sloane, Aug 09 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of -1 + psi(q) / (q * psi(q^9)) + 3 * q * psi(q^9) / psi(q) in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Aug 09 2012
a(n) = A123676(n) = A215412(n) = A215413(n) unless n=0. a(n) = -(-1)^n * A058644(n). - Michael Somos, Aug 09 2012
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017
EXAMPLE
T18C = 1/q + 3*q - 2*q^2 + 3*q^3 - 6*q^4 + 10*q^5 - 12*q^6 + 15*q^7 - ...
MATHEMATICA
QP = QPochhammer; s = -q + QP[q^3]^6 / (QP[q]*QP[q^2]*QP[q^6]^2*QP[q^9]* QP[q^18]) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015, adapted from PARI *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( -x + eta(x^3 + A)^6 / (eta(x + A) * eta(x^2 + A) * eta(x^6 + A)^2 * eta(x^9 + A) * eta(x^18 + A)), n))}; /* Michael Somos, Aug 09 2012 */
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved