login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058504 McKay-Thompson series of class 14C for Monster. 2
1, 0, 10, 24, 51, 100, 190, 340, 585, 984, 1606, 2564, 4022, 6188, 9382, 14044, 20746, 30308, 43836, 62784, 89153, 125588, 175542, 243656, 335988, 460388, 627178, 849676, 1145024, 1535416, 2049200, 2722544, 3601681, 4745208, 6227276, 8141656 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = -1..10000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of -4 + (eta(q^2)*eta(q^7)/(eta(q)*eta(q^14)))^4 in powers of q. - G. C. Greubel, Jun 14 2018

a(n) ~ exp(2*Pi*sqrt(2*n/7)) / (2^(3/4) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018

EXAMPLE

T14C = 1/q + 10*q + 24*q^2 + 51*q^3 + 100*q^4 + 190*q^5 + 340*q^6 + ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(-4 + (eta[q^2]*eta[q^7]/(eta[q]*eta[q^14]))^4), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 14 2018 *)

PROG

(PARI) q='q+O('q^50); A = (eta(q^2)*eta(q^7)/(eta(q)*eta(q^14)))^4/q; Vec(A - 4) \\ G. C. Greubel, Jun 14 2018

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Cf. A128516 (same sequence except for n=0).

Sequence in context: A162817 A103573 A067728 * A250798 A250576 A126911

Adjacent sequences:  A058501 A058502 A058503 * A058505 A058506 A058507

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

More terms from Michel Marcus, Feb 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 17:45 EST 2019. Contains 319349 sequences. (Running on oeis4.)