The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212631 Number of dominating subsets of the rooted tree with Matula-Goebel number n. 13
 1, 3, 5, 5, 9, 9, 9, 9, 17, 17, 17, 15, 15, 15, 31, 17, 15, 27, 17, 29, 29, 31, 27, 27, 57, 27, 53, 25, 29, 51, 31, 33, 57, 29, 53, 45, 27, 27, 51, 53, 27, 45, 25, 53, 97, 53, 51, 51, 49, 97, 53, 45, 33, 81, 105, 45, 53, 51, 29, 87, 45, 57, 89, 65, 93, 93, 27 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. a(n) = Sum(A212630(n,k), k>=1). a(n) is odd (see the Brouwer-Csorba-Schrijver reference). REFERENCES A. E. Brouwer, P. Csorba, and A. Schrijver, The number of dominating sets of a finite graph is odd. Preprint available on A. E. Brouwer's homepage. É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319. F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143. I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142. I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22. D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273. LINKS S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251. E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288. FORMULA In A212630 one gives the domination polynomial P(n)=P(n,x) of the rooted tree with Matula-Goebel number n. We have a(n) = P(n,1). EXAMPLE a(3)=5 because the rooted tree with Matula-Goebel number 3 is the path tree R - A - B; its dominating subsets are {A}, {R,A}, {R,B}, {A,B}, and {R,A,B}. MAPLE with(numtheory): P := proc (n) local r, s, A, B, C: r := n-> op(1, factorset(n)): s := n-> n/r(n): A := proc (n) if n = 1 then x elif bigomega(n) = 1 then x*(A(pi(n))+B(pi(n))+C(pi(n))) else A(r(n))*A(s(n))/x end if end proc: B := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then A(pi(n)) else sort(expand(B(r(n))*B(s(n))+B(r(n))*C(s(n))+B(s(n))*C(r(n)))) end if end proc: C := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then B(pi(n)) else expand(C(r(n))*C(s(n))) end if end proc: sort(expand(A(n)+B(n))) end proc: seq(subs(x = 1, P(n)), n = 1 .. 100); CROSSREFS Cf. A212618 - A212632. Sequence in context: A229428 A029639 A087349 * A090792 A076877 A120841 Adjacent sequences:  A212628 A212629 A212630 * A212632 A212633 A212634 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 02:56 EDT 2020. Contains 334613 sequences. (Running on oeis4.)