login
A184156
The Wiener polarity index of the rooted tree with Matula-Goebel number n.
0
0, 0, 0, 0, 1, 1, 0, 0, 2, 2, 2, 2, 2, 2, 3, 0, 2, 4, 0, 3, 3, 3, 4, 3, 4, 4, 6, 4, 3, 5, 3, 0, 4, 3, 4, 6, 3, 3, 5, 4, 4, 6, 4, 4, 7, 6, 5, 4, 4, 6, 4, 6, 0, 9, 5, 6, 4, 5, 3, 7, 6, 4, 8, 0, 6, 6, 3, 4, 7, 7, 4, 8, 6, 6, 8, 6, 5, 8, 4, 5, 12, 5, 6, 9, 5, 6, 6, 5, 4, 10, 6, 8, 5, 7, 5, 5, 6, 8, 8, 8, 6, 6, 9, 8, 9, 4, 6, 12, 5, 7
OFFSET
1,9
COMMENTS
The Wiener polarity index of a connected graph G is the number of unordered pairs {i,j} of vertices of G such that the distance between i and j is 3.
The Matula-Goebel number of a rooted tree is defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
REFERENCES
H. Deng, H. Xiao and F. Tang, On the extremal Wiener polarity index of trees with a given diameter, MATCH, Commun. Math. Comput. Chem., 63, 2010, 257-264.
W. Du, X. Li and Y. Shi, Algorithms and extremal problem on Wiener polarity index, MATCH, Commun. Math. Comput. Chem., 62, 2009, 235-244.
LINKS
Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
FORMULA
a(n) is the coefficient of x^3 in the Wiener polynomial of the rooted tree with Matula-Goebel number n. The coefficients of these Wiener polynomials are given in A196059. The Maple program is based on the above.
EXAMPLE
a(7)=0 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y with no pair of vertices at distance 3.
a(11) = 2 because the rooted tree with Matula-Goebel number 7 is a path on 5 vertices, say a, b, c, d, e, with each of the pairs {a,d} and {b,e} at distance 3.
MAPLE
with(numtheory): WP := proc (n) local r, s, R: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: R := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*R(pi(n))+x)) else sort(expand(R(r(n))+R(s(n)))) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(WP(pi(n))+x*R(pi(n))+x)) else sort(expand(WP(r(n))+WP(s(n))+R(r(n))*R(s(n)))) end if end proc: a := proc (n) options operator, arrow: coeff(WP(n), x, 3) end proc: seq(a(n), n = 1 .. 110);
MATHEMATICA
r[n_] := FactorInteger[n][[1, 1]];
s[n_] := n/r[n];
R[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, x*R[PrimePi[n]] + x, True, R[r[n]] + R[s[n]]];
WP[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, WP[PrimePi[n]] + x*R[PrimePi[n]] + x, True, WP[r[n]] + WP[s[n]] + R[r[n]]*R[s[n]]];
a[n_] := Coefficient[WP[n], x, 3];
Table[a[n], {n, 1, 110}] (* Jean-François Alcover, Jun 21 2024, after Maple code *)
CROSSREFS
Sequence in context: A109913 A197169 A048052 * A187785 A238277 A258757
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 12 2011
STATUS
approved