login
A058510
McKay-Thompson series of class 15C for Monster.
2
1, 0, 9, 19, 42, 78, 146, 249, 429, 695, 1125, 1749, 2713, 4086, 6123, 8986, 13122, 18852, 26934, 38001, 53328, 74068, 102336, 140208, 191153, 258741, 348606, 466806, 622383, 825342, 1090087, 1432923, 1876542, 2447029, 3179859, 4116282, 5311204, 6829008
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of -3 + (eta(q^3)*eta(q^5)/(eta(q)*eta(q^15)))^3 in powers of q. - G. C. Greubel, Jun 18 2018
a(n) ~ exp(4*Pi*sqrt(n/15)) / (sqrt(2) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 26 2018
EXAMPLE
T15C = 1/q + 9*q + 19*q^2 + 42*q^3 + 78*q^4 + 146*q^5 + 249*q^6 + 429*q^7 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[-3 + (eta[q^3]*eta[q^5]/(eta[q]*eta[q^15]))^3, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 18 2018 *)
PROG
(PARI) q='q+O('q^50); A = -3 + (eta(q^3)*eta(q^5)/(eta(q)*eta(q^15)) )^3/q; Vec(A) \\ G. C. Greubel, Jun 18 2018
CROSSREFS
Cf. A153084 (same sequence except for n=0).
Sequence in context: A159697 A014005 A286624 * A043122 A043902 A048696
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 19 2014
STATUS
approved