login
A045487
McKay-Thompson series of class 6D for Monster with a(0) = 1.
3
1, 1, -2, 28, -27, -52, 136, -108, -162, 620, -486, -760, 1970, -1404, -1940, 6048, -4293, -6100, 15796, -10692, -14264, 40232, -27108, -36496, 93285, -61020, -79054, 211624, -137781, -179296, 451680, -288360, -365780
OFFSET
-1,3
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
Expansion of 5 + (eta(q)*eta(q^2)/(eta(q^3)*eta(q^6)))^4 in powers of q. - G. C. Greubel, Jun 12 2018
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(5 + (eta[q]*eta[q^2]/(eta[q^3]*eta[q^6]))^4), {q, 0, 60}], q];
Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 12 2018 *)
PROG
(PARI) q='q+O('q^30); a= 5 + (eta(q)*eta(q^2)/(eta(q^3)*eta(q^6)))^4/q; Vec(a) \\ G. C. Greubel, Jun 12 2018
CROSSREFS
Cf. A007257.
Sequence in context: A056013 A363403 A007257 * A022376 A177829 A363875
KEYWORD
sign
STATUS
approved