login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045487 McKay-Thompson series of class 6D for Monster with a(0) = 1. 3
1, 1, -2, 28, -27, -52, 136, -108, -162, 620, -486, -760, 1970, -1404, -1940, 6048, -4293, -6100, 15796, -10692, -14264, 40232, -27108, -36496, 93285, -61020, -79054, 211624, -137781, -179296, 451680, -288360, -365780 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of 5 + (eta(q)*eta(q^2)/(eta(q^3)*eta(q^6)))^4 in powers of q. - G. C. Greubel, Jun 12 2018

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(5 + (eta[q]*eta[q^2]/(eta[q^3]*eta[q^6]))^4), {q, 0, 60}], q];

Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 12 2018 *)

PROG

(PARI) q='q+O('q^30); a= 5 + (eta(q)*eta(q^2)/(eta(q^3)*eta(q^6)))^4/q; Vec(a) \\ G. C. Greubel, Jun 12 2018

CROSSREFS

Cf. A007257.

Sequence in context: A182335 A056013 A007257 * A022376 A177829 A245801

Adjacent sequences:  A045484 A045485 A045486 * A045488 A045489 A045490

KEYWORD

sign

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 16:20 EST 2019. Contains 319335 sequences. (Running on oeis4.)