login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045485
McKay-Thompson series of class 6B for Monster with a(0) = 7.
3
1, 7, 78, 364, 1365, 4380, 12520, 32772, 80094, 185276, 409578, 871272, 1792754, 3582708, 6977100, 13277472, 24747867, 45267324, 81389908, 144048396, 251265288, 432425864, 734953116, 1234647216, 2051576037
OFFSET
-1,2
LINKS
I. Chen and N. Yui, Singular values of Thompson series. In Groups, difference sets and the Monster (Columbus, OH, 1993), pp. 255-326, Ohio State University Mathematics Research Institute Publications, 4, de Gruyter, Berlin, 1996.
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
Expansion of -5 + (eta(q^2)*eta(q^3)/(eta(q)*eta(q^6)))^12 in powers of q. - G. C. Greubel, Jun 12 2018
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 26 2018
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(-5 + (eta[q^2]*eta[q^3]/(eta[q]*eta[q^6]))^12), {q, 0, 60}], q];
Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 12 2018 *)
PROG
(PARI) q='q+O('q^30); A=-5+(eta(q^2)*eta(q^3)/(eta(q)*eta(q^6)))^12/q; Vec(A) \\ G. C. Greubel, Jun 12 2018
CROSSREFS
Cf. A007255.
Sequence in context: A356437 A107047 A210413 * A068621 A210406 A133272
KEYWORD
nonn
STATUS
approved